激光加工是将激光束作用于物体表面而引起物体形状或性能改变的加工过程,其实质是激光将能量传递给被加工材料,被加工材料发生物理或化学变化,使其达到加工的目的。加工技术可以分为4个层次:一般加工、微细加工、精密加工和超精密加工。激光精密加工技术优点:热变形小:激光加工的激光割缝细、速度快、能量集中,因此传到被切割材料上的热量小,引起材料的变形也非常小。节省材料:激光加工采用电脑编程,可以把不同形状的产品进行材料的套裁,比较大限度地提高材料的利用率,降低了企业材料成本。总的来说,激光精密加工技术比传统加工方法有许多优越性,其应用前景十分广阔。精密加工中,激光束聚焦光斑直径可达微米级,能实现复杂微小结构的加工。沈阳气膜孔激光精密加工
激光精密加工技术在微机电系统(MEMS)制造中的应用具有明显优势。 MEMS通常需要高精度和复杂结构的加工,激光精密加工技术能够满足这些需求。例如,在传感器和执行器的制造中,激光精密加工技术可以实现微米级别的切割、打孔和刻蚀,确保MEMS的性能和可靠性。此外,激光精密加工技术还可以用于加工多种材料,如硅和聚合物,提高MEMS的多样性和功能性。激光精密加工技术的无接触加工特点也减少了材料损伤和污染,符合MEMS制造的高洁净度要求。激光精密加工技术的高精度和高效率使其成为MEMS制造中不可或缺的加工手段。黄石紫外激光精密加工精密钻孔工艺可加工直径小于 0.1mm 的微孔,孔壁光滑。
激光切割是应用激光聚焦后产生的高功率密度能量来实现的。在计算机的控制下,通过脉冲使激光器放电,从而输出受控的重复高频率的脉冲激光,形成一定频率,一定脉宽的光束,该脉冲激光束经过光路传导及反射并通过聚焦透镜组聚焦在加工物体的表面上,形成一个个细微的、高能量密度光斑,焦斑位于待加工面附近,以瞬间高温熔化或气化被加工材料。每一个高能量的激光脉冲瞬间就把物体表面溅射出一个细小的孔,在计算机控制下,激光加工头与被加工材料按预先绘好的图形进行连续相对运动打点,这样就会把物体加工成想要的形状。
激光精密加工由于其独特的优点,已成功地应用于微、小型零件焊接中。高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔接,在机械、汽车、钢铁等工业部门获得了日益宽泛的应用。与其它焊接技术比较,激光焊接的主要优点是:激光焊接速度快、深度大、变形小。能在室温或特殊的条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。采用飞秒激光,脉宽极短,热影响区几乎为零,适合对热敏感材料的精细加工。
微机电系统(MEMS)对加工精度有着极高的要求,激光精密加工在此领域大显身手。在 MEMS 器件的制造中,如微型传感器和微型执行器,激光可以加工出复杂的微结构。以微型加速度计为例,其内部的微小悬臂梁、质量块等结构需要精确到微米级别。激光精密加工通过控制激光束的能量和光斑大小,能够在硅等材料上雕刻出这些精细结构。同时,在制造微流体芯片时,激光可以加工出微通道和微小的反应腔室,这些通道的尺寸和形状对于流体的控制和分析至关重要,激光精密加工确保了微流体芯片的高性能。激光加工,让每个细节都闪闪发光。安阳激光精密加工技术
激光精密加工可对太阳能电池片进行高效划片和刻槽处理。沈阳气膜孔激光精密加工
激光精密加工技术在医疗器械制造中的应用具有明显优势。 医疗器械通常需要高精度和高质量的加工,激光精密加工技术能够满足这些要求。例如,在心脏支架和手术器械的制造中,激光精密加工技术可以实现微米级别的切割和打孔,确保产品的性能和安全性。此外,激光精密加工技术还可以用于加工生物相容性材料,如不锈钢和钛合金,确保医疗器械的可靠性和耐用性。激光精密加工技术的无接触加工特点也减少了污染和交叉的风险,符合医疗器械制造的高洁净度要求。激光精密加工技术的高精度和高效率使其成为医疗器械制造中不可或缺的加工手段。沈阳气膜孔激光精密加工