什么是底部填充胶,为什么使用底部填充胶?什么是底部填充胶?底部填充胶简单来说就是底部填充之义,常规定义是一种用化学胶水(主要成份是环氧树脂)对BGA 封装模式的芯片进行封装模式的芯片进行底部填充,利用加热的固化形式,将BGA 底部空隙大面积 (一般覆盖一般覆盖80%以上)填满,从而达到加固的目的,增强BGA 封装模式的芯片和PCBA 之间的抗跌落性能之间的抗跌落性能。为什么使用底部填充胶?底部填充胶对SMT(电子电路表面组装技术)元件(如:BGA、CSA芯片等)装配的长期可靠性是必须的。其能很好的减少焊接点的应力,将应力均匀分散在芯片的界面上。选择合适的底部填充胶对芯片的铁落和热冲击的可靠性都起到了很大的保护作用。在芯片踢球阵列中,底部填充胶能有效的阻击焊锡点本身(即结构内的薄弱点)因为应力而发生应力失效。此外,底部填充胶的第二个作用是防止潮湿和其它形式的污染。底部填充胶用纵切的方法来判断胶水与锡球的填充性(助焊剂兼容性)。番禺芯片粘接胶怎么用
底部填充胶是什么?底部填充胶简单来说就是底部填充之义,常规定义是一种用化学胶水(主要成份是环氧树脂)对BGA 封装模式的芯片进行封装模式的芯片进行底部填充,利用加热的固化形式,将BGA 底部空隙大面积 (一般覆盖一般覆盖80%以上)填满,从而达到加固的目的,增强BGA 封装模式的芯片和PCBA 之间的抗跌落性能之间的抗跌落性能。底部填充胶还有一些非常规用法,是利用一些瞬干胶或常温固化形式胶水在BGA 封装模式芯片的四周或者部分角落部分填满,从而达到加固目的。吉林缝隙填充胶价格底部填充胶作为消费电子一般而言温循区间不超过100度。
底部填充胶常见问题: 一、胶水渗透不到芯片底部空隙: 这种情况属胶水粘度问题,也可以说是选型问题,胶水渗透不进底部空隙,只有重新选择合适的产品,底部填充胶,流动性好,在毛细作用下,对BGA封装模式的芯片进行底部填充,再利用加热的固化形式,快达3-5分钟完全固化,将BGA底部空隙大面积填满(填充饱满度达到95%以上),形成一致和无缺陷的底部填充层,并且适合高速喷胶、全自动化批量生产,帮助客户提高生产效率,大幅缩减成本。 二、胶水不完全固化或不固化: 助焊剂残留会盖住焊点的裂缝,导致产品失效的原因检查不出来,这时要先清洗残留的助焊剂。但是芯片焊接后,不能保证助焊剂被彻底清理。底部填充胶中的成分可能与助焊剂残留物反应,可能发生胶水延迟固化或不固化的情况。要解决由助焊剂影响底部填充胶能否固化的问题,首先要防止助焊剂的残留,以及要了解胶水与助焊剂的兼容性知识,底部填充胶具有工艺简单、优异的助焊剂兼容性、毛细流动性、高可靠性边角补强粘合等特点。
一种低温快速固化底部填充胶及其制备方法:低温快速固化底部填充胶,其特点是由下述重量配比的原料组成:树脂40-65份,色料0.5份,固化剂20-25份,促进剂1-6份,偶联剂0.1-3份,环氧活性稀释剂15-25份;先把树脂和色膏混合均匀,时间20-40min,温度20-30℃,然后加入固化剂,促进剂,分三次加入,三辊机混合均匀,温度20-30℃,在冷却干燥条件下混合,冷水控制在15℃,混合三遍,混合均匀后加入反应釜中满真空15min,当树脂和固化剂混合均匀后加入偶联剂,环氧稀释剂混合,满真空30min,即得产品;其固化温度低,固化速度快,储存稳定性好,制备工艺简易环保,成本低,适用范围广。底部填充胶同芯片,基板基材粘接力强。
影响底部填充胶流动性的因素有很多,次要因素包括:1)施胶量(点胶方式);2)基板角度(有些厂家会将点胶后的基板倾斜一定角度加快流动性);3)环境温度(不预热的情况下)。一些因素的主次也都是相对而言的,如果客户能接受预热的方式的话,同时客户对流动性的要求不会精确到秒的话,那么上述因素的影响都会变小了。不预热的情况下要求快速填充的话,除了把胶的常温粘度做小外貌似没有更好的办法。另外同样是预热的条件下的,流动速度就和胶水体系自身的设计思路有很大的关系了。同样一款2000cps左右粘度的胶水,预热的情况下的流动速度也可以差几倍时间的。对于预热这个环节每家的说法都不一样,很多客户不愿意预热其实也是为了点胶操作的便利性,然而站在理论分析的角度,基板预热可以起到烘烤芯片的作用,而且也可以减少填充时产生空洞(气泡)的概率,当然加快填充速度也是必然的。采购底部填充胶,建议您从实力、生产线、设备以及售后服务等方面去分析。天津手机锂电池保护板芯片固定胶批发
底部填充胶的应用效率主要是固化速度以及返修的难易程度。番禺芯片粘接胶怎么用
如何选择适合自己产品的底部填充胶,需重点关注以下几个方面: 1 热膨胀系数(CTE): 焊点的寿命主要取决于芯片、PCB和底部填充胶之间的CTE匹配,理论上热循环应力是CTE、弹性模量E和温度变化的函数。但根据实验统计分析显示CTE1是主要的影响因素。由于CTE2与CTE1相关性很强,不管温度在Tg值以下还是Tg值以上,CTE2都会随着CTE1增加而增加,因此CTE2也是关键因素。 2 玻璃转化温度(Tg): Tg在材料高CTE的情况下对热循环疲劳寿命没有明显的影响,但在CTE比较小的情况下对疲劳寿命则有一定影响,因为材料在Tg值以下温度和Tg值以上温度,CTE变化差异很大。实验表明,在低CTE情况下,Tg越高热循环疲劳寿命越长。番禺芯片粘接胶怎么用