丰富模拟轨迹类型呈现:GPS 轨迹模拟器能够生成丰富多样的模拟轨迹类型。直线轨迹是基础类型,用于简单的场景模拟,如车辆在笔直公路上的行驶。曲线轨迹则可模拟车辆转弯、河流蜿蜒等情况,通过设定曲率等参数精确生成。循环轨迹常用于模拟一些周期性运动,像摩天轮的转动、列车在环形轨道上的运行等。不规则轨迹可模拟复杂的自然运动或受随机因素影响的运动,比如野生动物的迁徙路径、无人机在复杂环境中的飞行轨迹,通过引入随机噪声等算法实现。GNSS 导航模拟器模拟飞机飞行轨迹,保障航空导航安全。便携式GNSS模拟器录制回放
基础型 GNSS 模拟器功能相对简单,主要能够模拟卫星信号的基本特征,如生成固定数量卫星的标准信号,可进行简单的信号强度调节。它适用于初学者对 GNSS 接收机基本功能的初步测试,以及一些对信号模拟要求不高的基础教学场景。高级型 GNSS 模拟器则具备丰富的功能,除了模拟常规信号外,还能精确模拟复杂的信号环境,如多径效应、信号干扰等。它可设置多种动态场景,对接收机的抗干扰能力、动态性能等进行多方面测试,常用于专业的科研项目以及不错产品的研发测试。LabSatgnss导航模拟器GPS 轨迹模拟器能灵活编辑轨迹,适配户外运动产品研发需求。
GNSS 模拟器可分为射频(RF)模拟器和中频(IF)模拟器。射频模拟器直接生成与真实 GNSS 卫星发射频率相同的射频信号,通常涵盖 GPS L1、L2、L5 频段,以及北斗、GLONASS 等其他系统对应频段。其优势在于能直接模拟卫星信号在空中传播后的真实状态,无需接收机进行额外的下变频处理,适用于对接收机前端射频性能测试,如天线性能、射频滤波器效果评估等。而中频模拟器输出的是经过下变频后的中频信号,频率一般在几百兆赫兹以下。这种类型便于进行信号处理算法的测试与验证,因为中频信号更易于被数字信号处理设备采集和分析,开发人员可专注于研究信号解算、定位算法等重心功能。
在科研领域,GNSS 模拟器为众多研究提供有力支持。在地球物理学研究中,利用模拟器可模拟不同地球物理条件下的卫星信号,研究电离层、对流层变化对信号传播的影响,助力深入了解地球大气结构与动力学。在天文学研究中,通过模拟卫星信号在星际空间的传播,探索信号受太阳风、引力场等因素干扰情况,为星际导航研究提供数据支撑。在新型定位算法研究方面,科研人员借助模拟器生成大量不同场景的卫星信号数据,用于训练和验证新算法,如基于深度学习的定位算法,以提升定位精度和抗干扰能力。GNSS 模拟器还为量子导航等前沿研究提供了地面测试平台,模拟量子态下卫星信号接收与处理,推动导航技术的创新发展。GNSS 轨迹模拟器生成循环轨迹,适用于周期性运动场景模拟。
农业生产正朝着智能化、精细化方向发展,GNSS 模拟器在其中贡献明显。在精细农业中,农民使用搭载 GNSS 接收机的农机设备进行作业,GNSS 模拟器可模拟农田不同位置的卫星信号环境。比如在农田中有高大树木或建筑物的区域,模拟信号遮挡情况,测试农机自动驾驶系统能否准确按照预设路线进行播种、施肥、灌溉等作业。通过模拟测试,优化农机设备的导航算法,提高农机作业的精度,避免因定位偏差导致的资源浪费,实现精细投入,提高农作物产量与质量,推动农业现代化进程。GNSS 模拟器通过模拟卫星信号,助力接收机在复杂环境下的性能测试。LabSatgnss导航模拟器
GPS 轨迹模拟器设定不同速度模拟,用于运动数据分析。便携式GNSS模拟器录制回放
信号生成基础:GNSS 信号模拟器首要任务是生成基础信号。它基于精确的数学算法,模拟卫星在太空中的运动轨迹。以 GPS 系统为例,依据开普勒定律等轨道力学知识,计算出卫星在不同时刻的精确位置。同时,内置高精度时钟模型,模拟卫星携带的原子钟信号。通过这些复杂的运算,得到每个卫星对应的伪随机噪声(PRN)码序列起始点。这些 PRN 码如同卫星的独特 “指纹”,每个卫星都有专属序列。将卫星位置信息、时钟信息与 PRN 码信息相结合,利用数字信号处理器(DSP)生成较初的数字基带信号,为后续模拟真实卫星信号奠定基础。便携式GNSS模拟器录制回放