超微量分光光度计比色法测定蛋白质浓度:BCA法:这是一种较新的、更敏感的蛋白测试法。要分析的蛋白在碱性溶液里与Cu2+反应产生Cu+,后者与BCA形成螯合物,形成紫色化合物,吸收峰在562nm波长。此化合物与蛋白浓度的线性关系极强,反应后形成的化合物非常稳定。相对于Lowry法,操作简单,敏感度高。但是与Lowry法相似的是容易受到蛋白质之间以及去污剂的干扰。Bradford法:这种方法的原理是蛋白质与考马斯亮兰结合反应,产生的有色化合物吸收峰595nm。其比较大的特点是,敏感度好,是Lowry和BCA两种测试方法的2倍;操作更简单,速度更快;只需要一种反应试剂;化合物可以稳定1小时,方便结果;而且与一系列干扰Lowry,BCA反应的还原剂(如DTT,巯基乙醇)相容。但是对于去污剂依然是敏感的。**主要的缺点是不同的标准品会导致同一样品的结果差异较大,无可比性。江西超微量分光光度计厂家直销不同物质的吸收光谱是不同的.因此根据吸收光谱,可以鉴别溶液中所含的物质。
光谱仪和分光光度计有什么区别?使用光谱进行定性分析的仪器叫做光谱仪。 使用分光棱镜或者光栅产生光谱,并利用其中特定的某个或某段光谱线强度来进行定量分析的仪器叫做分光光度计。这两种叫法基本没差别,光谱仪都是要有分光组件的,比如ICP-AES, AAS。 但是历史上因为中国上海精密仪器厂首先将紫外可见分光光度计进行了国产化,当时的技术难点也就在分光技术上。老一代的分析员都是把紫外可见分光光度计直接称作分光光度计,所以分光光度计也特指紫外可见分光光度计。而荧光光谱仪、核磁共振光谱仪、扫描隧道光谱仪其实也是要有分光组件的,现在都是用光谱仪这个名词来统称了,因此光谱仪的概念比分光光度计范围要大一些,新一些。而分光光度计更集中在定量分析方面的称呼,有人把AES、AAS也称作分光光度计因为它们在一般性的分析工作中也主要是用来定量的,这就造成了“分光光度计”和“光谱仪”两种叫法的混乱。
分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光线透过测试的样品后,部分光线被吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。单色光辐射穿过被测物质溶液时,被该物质吸收的量与该物质的浓度和液层的厚度(光路长度)成正比,其关系如下式:A=-lg(I/I0)=-lgT=kLc式中 :A 为吸光度;I0为入射的单色光强度;I 为透射的单色光强度;T 为物质的透射率;k 为摩尔吸收系数;L 为被分析物质的光程,即比色皿的边长;c 为物质的浓度;物质对光的选择性吸收波长,以及相应的吸收系数是该物质的物理常数。当已知某纯物质在一定条件下的吸收系数后可用同样条件将该供试品配成溶液,测定其吸收度,即可由上式计算出供试品中该物质的含量。在可见光区,除某些物质对光有吸收外,很多物质本身并没有吸收但可在一定条件下加入显色试剂或经过处理使其显色后再测定,故又称比色分析。由于显色时影响呈色深浅的因素较多,且常使用单色光纯度较差的仪器,故测定时应用标准品或对照品同时操作。Bradford法的原理是蛋白质与考马斯亮兰结合反应。
ε 摩尔吸光系数(Lmol-1cm-1),它与吸收物质的性质及入射光的波长λ有关。双检测模式超微量分光光度计试用
在生物医学领域,超微量分光光度计常被用于研究生物大分子的结构和功能。例如,通过测量核酸的吸光度,可以推断出其含量和纯度。同样,通过测量蛋白质的吸光度,可以了解蛋白质的结构和折叠情况。此外,超微量分光光度计还可用于监测细菌生长过程中的生理变化,为药物的开发提供了有力的帮助。在化学领域,超微量分光光度计也被广泛应用于样品的定量和定性分析。其高灵敏度和宽广的动态范围使得即使是对痕量元素的分析也成为可能。此外,超微量分光光度计还可以通过光谱对比的方法,对不同样品进行鉴别和分类,这对于地质学、材料科学等领域具有重要意义。双检测模式超微量分光光度计试用