近红外光谱仪的性能在很大程度上取决于其分辨率和波长的精确度。具备高分辨率的光谱仪能够细致地区分不同波长的光信号,这对于揭示样品中成分的微妙差异至关重要。这种高分辨率不仅能够揭示更多的细节,还能精确定位峰值,从而有效提升分析的精确度和可信度。波长准确性则关乎光谱仪测量值与实际波长之间的一致性。在化学成分鉴定和确保分析结果的可靠性方面,这一点尤为关键。波长的准确测量对于识别样品中的特定化学结构和功能团至关重要。如果波长测量存在偏差,可能会导致错误的分析结论。因此,高精度的波长测量是确保近红外光谱仪分析结果有效性的基础。综上所述,高分辨率和波长测量的准确性构成了近红外光谱仪性能的基石。这些特性不仅增强了光谱仪在化学分析中的准确性和可靠性,还扩展了其在生物、医药和其他科学领域的应用范围。通过提供精细的光谱数据,近红外光谱仪能够为科学研究和实际应用提供强有力的分析工具。紫外-可见光谱(UV-Vis):研究分子的电子跃迁。福建QEPRO光谱仪设备
光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有红外光谱仪和紫外光谱仪。按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。按探测方法分,有直接用眼观察的分光镜,用感光片记录的摄谱仪,以及用光电或热电元件探测光谱的分光光度计等。单色仪是通过狭缝只输出单色谱线的光谱仪器,常与其他分析仪器配合使用。一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分:01入射狭缝:在入射光的照射下形成光谱仪成像系统的物点。02准直元件:使狭缝发出的光线变为平行光。该准直元件可以是一单独的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。03色散元件:通常采用光栅,使光信号在空间上按波长分散成为多条光束。04聚焦元件:聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。05探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。江西显微荧光光谱仪官方网站拉曼光谱:检测生物组织中的化学成分。
手持式光谱仪可根据其独特的功能和特点进行分类:光纤耦合手持式光谱仪:配备光纤传输功能,这类光谱仪能够将远距离或难以直接接触的光信号引导至仪器进行分析,适用于特殊或危险环境中的测量。无线连接手持式光谱仪:通过蓝牙或Wi-Fi等无线技术与智能设备连接,实现数据的即时传输和远程控制,提高了操作的便捷性和灵活性。多功能手持式光谱仪:集成了多种测量功能,如颜色测量、光谱分析、光强度测量等,这类光谱仪能够适应多变的应用需求,提供分析解决方案。手持式光谱仪以其便携性、高效性和多功能性,在现代科学、工业和现场检测中扮演着越来越重要的角色。
光谱仪的光源是其分析能力的基石,有多种类型可供选择,每种都具有独特的特性和应用领域:白炽灯:提供连续的光谱,包含从可见光到红外的波长。尽管其光谱分布并不完全均匀,且含有较多的红外和紫外成分,但通过滤波技术,白炽灯仍可用于多种光谱分析。氙灯:氙灯作为一种气体放电灯,以其连续且宽广的光谱覆盖范围而著称。其光谱分布相对均匀,特别适合于需要全波长覆盖的应用,例如荧光光谱分析。汞灯:汞灯同样是一种气体放电灯,其产生的光谱具有明显的离散谱线,主要集中在紫外和可见光区域。这些特征使得汞灯非常适合于需要特定波长激发的应用,如荧光标记和光谱校准。激光器:激光器以其产生的高聚焦、单色、相干光而闻名。不同类型的激光器能够提供不同波长的光线,例如氦氖激光器、二氧化碳激光器等。激光器的光谱线宽非常窄,这使得它们非常适合于高分辨率光谱分析和精密测量。这些光源的选择取决于分析任务的具体需求,包括所需的光谱范围、分辨率和测量的精确度。通过精心选择和应用这些光源,光谱仪能够在化学分析、材料科学、生物医学研究等领域发挥关键作用。RQuest+ 系列是海洋光学的高性能近红外光谱仪,特别适用于材料科学中的多种应用。
光谱仪是一种用来测量光谱成分的科研仪器,光谱仪可以直观地显示一张光谱(y轴是强度,x轴是光波长/频率),表征着光强随着光波长的分布。不同波长的光在光谱仪内部被分光元件分开,分光元件通常是折射棱镜或者衍射光栅。光谱仪用于测量各种各样的光辐射,可以直接测光源的发射光谱,也可以测光源和物质相互作用后的反射、吸收、透射、或者散射光谱。光和物质相互作用后,其光谱会在某个光谱范围或者是某个特定波长发生变化,根据光谱的变化就可以定性或定量地分析物质的特性,比如生物和化学上对血液及未知溶液的成分及浓度分析,以及对材料的分子、原子结构和元素组成的分析。光谱仪可以将光分解成不同波长的光谱,帮助科学家研究物质的组成和结构。福建QEPRO光谱仪设备
用于检测土壤中的营养成分、水分、盐分等,帮助农民科学种植和管理。福建QEPRO光谱仪设备
傅里叶变换红外光谱仪(FTIR)能够通过检测蛋白质分子中不同化学键的伸缩和弯曲振动来确定蛋白质的二级结构。蛋白质的二级结构包括α-螺旋、β-折叠、β-转角和无规则卷曲等,这些结构通过氢键连接盘旋形成。FTIR通过分析酰胺I带(1600-1700 cm^-1)的特征吸收峰来研究蛋白质的二级结构,因为这个区域的吸收峰与蛋白质的二级结构密切相关。通过带曲线拟合和二阶导数等数学程序可以解析重叠的酰胺I带成分,并量化蛋白质的二级结构。FTIR也可以用来研究蛋白质在不同条件下(如温度、pH值、金属离子、药物分子等)的构象变化。这些变化可以通过FTIR光谱中的特征吸收峰的变化来监测,从而帮助理解蛋白质的功能和生物学意义。福建QEPRO光谱仪设备