我们知道,在常温常压下金刚石是亚稳相,这其中碳原子的4 个价电子是以sp3杂化方式形成四面体配位的键合结构。而石墨则是一种更稳定的同素异形体,它的碳原子以sp2 杂化方式形成三配位键合结构。石墨的形成在热动力学上优于金刚石的形成,这意味着亚稳相的 sp2杂化键合只能在非平衡过程中形成。类金刚石薄膜都是亚稳态材料,在制备方法中需要有荷能离子轰击生长表面这一关键。自从Aisenberg 和Chabot 两位科学家利用碳离子束沉积出DLC 薄膜以来,人们已经成功地研究出了许多物相沉积、化学气相沉积以及液相法制备DLC 薄膜的新方法和新技术。类金刚石薄膜的种类及其应用。切刀类金刚石公司
有数种方法来生产类金刚石碳,但都是基于, sp杂化键比sp杂化键小很多的事实。因此原子尺度上压力、冲击、催化或者是几种方法的组合的应用可以迫使sp杂化碳原子结合在一起形成sp键合。这些作用必须足够强使得这些原子能够偏离sp键合的特性,而不能像弹簧一样变形回来。一般的技术,要有一种足够的压力,要么能够使sp杂化碳原子团簇深入到涂层内,使得没有足够的空间让sp杂化扩张回来,要么这些新的团簇就很快被下一轮新到来的碳所埋。可以把这个过程想象成为下冰雹一样的一种更局部化、更快、更加纳米的热压结合条件来生产天然和合成的金刚石。由于它们单独的的发生在生长薄膜或涂层表面的许多地方,它们倾向于形成类似于鹅卵石街道一样的表面,其中鹅卵石是指sp杂化碳的结核或团簇。根据所使用的特定生产工艺,生产上会有很多碳沉积的周期,一些工艺例如连续的新碳元素到达比例和弹道运输可以促使sp键合形成。其结果就是,ta-C可能有”鹅卵石街道“的结构,或者说结核会融在一起,就像一块海绵或是鹅卵石一样,小到几乎不能看见。图示为一个常规的"中等"形貌的ta-C薄膜。冲压模具类金刚石工艺类金刚石薄膜通的两种气体。
在一台yBHИПA-1型双激发源等离子弧薄膜沉积装置上制取Ti合金化DLC膜,用纳米硬度计、显微硬度计、原子力显微镜以及X射线衍射仪和光电子能谱仪等手段对薄膜的力学性能和结构进行了分析和测定.摩擦磨损试验在一台球-盘滑动磨损试验机上进行.比较了不同钛合金化程度的DLC膜及热处理前后的性能变化.结果表明,薄膜的力学性能与Ti含量有非单值关系,但摩擦系数随Ti含量增加而升高;热处理后薄膜显微硬度有名升高的原因是生成了碳化钛硬化相.上海英屹涂层技术有限公司引进美国PE-CVD设备技术制备的类金刚石DLC膜层沉积速率快膜厚可达60um膜层硬度高膜层摩擦系数低小于结合力好耐腐蚀性能好优异的耐磨性膜层具有自润滑性的优点。可以解决PVD涂层镀不到的工件内孔的问题。公司涂层已经应用于航空机械模具电子医疗汽车发动机部件等领域。
类金刚石在生物医学特性及其应用。由于DLC薄膜在化学成分上(碳、氢元素)能够满足生物相容性的要求并具有高硬度、低摩擦系数、化学惰性等特性,同时具备优异的生物相容性和化学稳定性,越来越多的研究者将目光投向了DLC薄膜在生物医学领域的应用。例如人工关节表面沉积的DLC薄膜,可以增强人工关节的耐磨、耐蚀性能、减少磨屑、增加生物相容性,提高使用性能。在作为人工心脏瓣膜的钛合金或不锈钢表面沉积一层DLC薄膜,不仅能满足生物相容性的要求,而且能够提高该部件的机械和耐腐蚀性能,提高这些部件的使用性能。此外,DLC薄膜对蛋白质的吸附率高,对血小板的吸附率低,可以在不影响主体特征的前提下,从多种途径促进材料表面生成具有活性的功能簇,从而减少血液凝固,使生物组织与植入的人工材料和谐相处,减轻患者的痛苦。类金刚石薄膜市场前景如何。
分别以氩气-甲烷、氩气-乙炔为辅助气体,高纯石墨为靶材,利用中频脉冲非平衡磁控溅射技术制备了类金刚石薄膜.采用Raman光谱、X射线光电子能谱、纳米压痕测试仪、表面形貌进行了分析.Raman光谱和X射线光电子能谱测试结果表明,以氩气-甲烷为辅助气体制备的类金刚石薄膜中sp3杂化键的含量比以氩气-乙炔为辅助气体制备的类金刚石薄膜的高.纳米压痕测试结果表明,以氩气-甲烷为辅助气体制备的类金刚石薄膜的纳米硬度比以氩气-乙炔为辅助气体的高.原子力显微镜测试结果表明,以氩气-甲烷为辅助气体制备的类金刚石薄膜的RMS表面粗糙度比以氩气-乙炔为辅助气体的低.以上结果说明辅助气体组成对类金刚石薄膜的键结构、机械性能、表面形貌有较大的影响.上海英屹涂层技术有限公司引进美国PE-CVD设备技术制备的类金刚石DLC膜层沉积速率快膜厚可达60um膜层硬度高膜层摩擦系数低小于结合力好耐腐蚀性能好优异的耐磨性膜层具有自润滑性的优点。可以解决PVD涂层镀不到的工件内孔的问题。公司涂层已经应用于航空机械模具电子医疗汽车发动机部件等领域。类金刚石涂层怎么使用?冲压模具类金刚石工艺
DLC涂层是在电离和分解的碳或烃类物质以通常为10-300eV的能量降落在基底表面时形成的。切刀类金刚石公司
纳米金刚石微粉:纳米技术是上世纪9O年代后兴起的一项高新技术,纳米级金刚石由尺寸为纳米级,即十亿分之一米的金刚石微粒组成,是近几年来用炸裂技术合成的新材料。它不但具有金刚石的固有特性,而且具有小尺寸效应、大比表面积效应、量子尺寸效应等,因而展现出纳米材料的特性。在爆轰波中合成的这种金刚石具有立方组织结构,晶格常数为(O.3562+0.0003)nm,晶体密度为3.1g/cm3,比表面积为300m2/g~390m2/g。用不同的化学方法处理后,金刚石表面可形成多种不同的官能团,这种金刚石晶体具有很高的吸附能力。切刀类金刚石公司