冷挤压在新型储能材料加工领域展现创新潜力。钠离子电池电极集流体、固态电池金属封装壳等部件,要求材料兼具高导电性与良好成型性。通过开发微纳级表面织构模具,在冷挤压过程中同步实现金属表面纳米化处理,使集流体表面粗糙度 Ra 值降至 0.1μm 以下,有效降低电池内部接触电阻。针对镁基固态电解质材料,采用分步冷挤压工艺,先制备多孔骨架结构,再通过二次挤压实现致密化,材料离子电导率提升至 10?3 S/cm 量级,为下一代储能器件制造提供关键工艺支撑。冷挤压工艺可实现自动化生产,提高生产效率。徐州冷挤压以客为尊
冷挤压模具的梯度功能材料设计突破传统性能瓶颈。采用粉末冶金技术制备的梯度模具,外层为高硬度碳化钨增强相,内部为韧性优异的合金钢基体,实现表面耐磨性与整体抗断裂性的比较好平衡。这种模具在不锈钢管件冷挤压中,使用寿命从 8000 件提升至 3.2 万件,单位产品模具成本下降 65%。配合激光熔覆修复技术,对磨损部位进行原位梯度材料再生,使模具修复后性能恢复率超过 90%,形成 “设计 - 制造 - 修复” 的全周期应用体系,推动冷挤压模具向长寿命、低成本方向发展。连云港金属冷挤压件冷挤压技术通过常温塑性变形,高效成型金属零件,精度高、表面质量好。
冷挤压工艺在海洋工程装备制造中开辟新应用场景。深海探测设备的耐压壳体、水下连接器等部件,需满足**度、高耐蚀性要求。通过冷挤压加工含钼、铜的超级奥氏体不锈钢,零件屈服强度可达 800MPa 以上,在海水环境中的缝隙腐蚀速率降低 70%。采用多级挤压工艺制造的渐变壁厚壳体,通过优化金属流动路径,使材料利用率从传统切削加工的 35% 提升至 78%。目前该技术已应用于我国深海潜标系统**部件生产,保障设备在 6000 米深海环境下稳定运行超过 5 年。
冷挤压工艺在生产过程中,对设备的选择和性能要求较为关键。常用的冷挤压设备包括通用机械压力机、液压机、冷挤压力机等。通用机械压力机具有较高的工作速度,适用于一些批量较大、形状不太复杂的零件冷挤压。液压机则能提供较大的压力,且压力输出较为平稳,对于变形抗力较大的金属材料或大型零件的冷挤压更为合适。冷挤压力机是专门为冷挤压工艺设计制造的设备,其在压力控制、滑块运动精度等方面具有优势,能够更好地满足冷挤压工艺对设备的特殊要求。此外,一些企业还成功采用摩擦压力机与高速高能设备进行冷挤压生产,拓展了冷挤压设备的应用范围。冷挤压过程中,温度变化对金属变形有一定影响。
冷挤压过程中的润滑环节至关重要。合适的润滑剂能够有效降低金属与模具间的摩擦力,减少模具磨损,同时有助于金属均匀流动,提高零件的成型质量。在冷挤压实践中,针对不同的金属材料和工艺要求,会选用不同类型的润滑剂。对于一些有色金属,如铝、铜等,可采用脂肪润滑剂,其能在金属表面形成一层润滑膜,降低摩擦系数。而对于钢材的冷挤压,磷化皂化处理是一种理想的表面处理与润滑方式。经磷酸锌处理过的钢毛坯表面附有钠皂薄膜,这层薄膜不易脱落,在挤压时可减小压力,提高模具寿命和零件质量。冷挤压技术可制造出薄壁、深孔等特殊结构零件。淮安锻件冷挤压铝合金件
冷挤压后的金属表面因加工硬化,硬度和耐磨性增强。徐州冷挤压以客为尊
冷挤压技术与微纳制造技术的交叉融合,为半导体封装领域带来创新突破。在芯片封装中,冷挤压可用于制造高精度的引脚框架和散热基板。通过开发纳米级精度的模具和超精密冷挤压设备,能够实现引脚间距小于 50 微米的高精度成型,满足芯片小型化、高密度封装的需求。同时,冷挤压过程中对金属材料的塑性加工,可优化散热基板的微观结构,使其热导率提升 20% - 30%,有效解决芯片散热难题。这种创新工艺推动了半导体封装技术向更高集成度、更高性能方向发展。徐州冷挤压以客为尊