其他类型电子束熔化(EBM)原理类似于SLM,但使用电子束而不是激光束来熔化金属粉末。材料主要是金属粉末。材料喷射通过喷嘴将液态或粉末状的材料喷射到打印区域,并使其固化或烧结。材料可以是多种类型,如塑料、金属、陶瓷等。粘结剂喷射使用喷嘴将粘结剂喷射到粉末材料上,通过粘结剂将粉末颗粒粘合在一起。材料通常是粉末状,如陶瓷粉末、金属粉末等。定向能沉积通过高能束(如激光或电子束)将材料直接熔化并沉积在基板上,逐层构建物体。材料可以是金属粉末或丝状材料。片材层压将薄片材料逐层叠加,通过热压或粘合剂固定,形成三维物体。材料可以是纸张、塑料薄膜等。3D打印可以制造功能性产品,如可穿戴设备和电子元件。丽水大型产品3D打印
材料因素材料特性:不同的3D打印材料具有不同的物理和化学性质,如熔点、粘度、收缩率等,这些特性会影响打印过程和产品性能。例如,收缩率较大的材料在打印后容易出现变形、开裂等问题;粘度不合适的材料可能导致挤出不均匀,影响产品表面质量。材料质量:材料的纯度、粒度分布、含水率等质量指标也会对打印质量产生影响。纯度高、粒度均匀、含水率低的材料通常能够提供更好的打印效果,反之可能会引起堵塞喷头、粘结不良等问题。材料兼容性:对于多材料打印或需要与其他部件配合使用的情况,材料之间的兼容性非常重要。如果材料之间不能良好地粘结或存在化学不相容性,会导致产品出现分层、脱落等问题,影响产品的整体性能。泰州PA123D打印工厂食品行业探索,打印个性化食品。
跨界创新与融合:3D 打印将与其他前沿技术深度融合,如与区块链技术结合,为 3D 打印产品创建不可篡改的数字证书,增强产品来源和质量的透明度;生物打印的进一步发展可能在医疗领域实现更复杂的组织和打印。应用领域拓展与深化:在航空航天领域,3D 打印技术从 “可选项” 过渡到 “必选项”,并向天空探索、卫星通信、无人机等细分领域拓展;在汽车制造、生物医疗、建筑等领域的应用也不断深化,如 3D 打印在汽车制造中实现镂空一体化打印,在再生医疗领域有望在药物筛选和修复等方面发挥巨大作用。
定制化与批量生产融合:当D 打印主要集中于个性化定制和小批量生产,但随着生产速度提升和材料种类丰富,定制化与批量生产的界限逐渐模糊。像汽车制造等大型企业已开始利用该技术生产标准化零部件,未来会有更多个性化产品推出,不过也需要在灵活性与生产效率间找到平衡。材料多样化与环保化:除常见的塑料、金属和陶瓷等材料,新兴的环保型材料以及可生物降解材料的研究正在进行。全球对环保和可持续发展的要求日益提高,低成本的回收材料将在生产中得到更广泛应用,但这些环保型材料的普及还需经过技术验证与应用适应性评估。未来,3D打印技术有望成为更加普及的生产方式,推动产业变革。
生物3D打印:使用生物材料(如细胞、生物墨水等)进行打印,以制造生物组织或。在医疗领域具有巨大的潜力,如组织工程、再生医学等。
复合材料3D打印:使用多种材料的混合物作为打印材料,以实现特定的性能要求。在航空航天、汽车等领域有应用,以提高部件的强度和耐久性。
其他特殊材料3D打印:包括食品、纸张、木材等特殊材料的3D打印技术。这些技术在食品定制、包装设计等领域有独特的应用价值。
3D打印技术具有多种类型和技术路线,每种类型都有其特定的优点和应用领域。选择适合特定需求的3D打印技术需要考虑材料性质、精度要求、打印速度和成本等因素。 考古修复,利用技术重现历史文物。江西工业3D打印工厂
3D打印,即三维打印,逐层堆叠材料构建物体。丽水大型产品3D打印
定向能量沉积(DED)原理:金属材料在沉积的同时被强大的能量馈送和融合。子类型:粉末激光能量沉积、线弧增材制造(WAAM)、线电子束能量沉积、冷喷涂等。材料:金属线材或粉末。特点:用于逐层打印,也常用于修复或增加金属物体的特征。7. 剥离层积原理:将非常薄的材料堆叠和层压在一起,产生3D物体或堆叠,然后用机械或激光切割形成终形状。类型:层压对象制造(LOM)、超声波固化(UC)等。材料:纸张、聚合物、片状金属等。特点:能够快速生产,但精度可能较低,且浪费较多材料。丽水大型产品3D打印