设计规则检查(DRC)运行DRC检查内容:线宽、线距是否符合规则。过孔是否超出焊盘或禁止布线区。阻抗控制是否达标。示例:Altium Designer中通过Tools → Design Rule Check运行DRC。修复DRC错误常见问题:信号线与焊盘间距不足。差分对未等长。电源平面分割导致孤岛。后端处理与输出铺铜与覆铜在空闲区域铺铜(GND或PWR),并添加散热焊盘和过孔。注意:避免锐角铜皮,采用45°倒角。丝印与标识添加元器件编号、极性标识、版本号和公司Logo。确保丝印不覆盖焊盘或测试点。输出生产文件Gerber文件:包含各层的光绘数据(如Top、Bottom、GND、PWR等)。钻孔文件:包含钻孔坐标和尺寸。装配图:标注元器件位置和极性。BOM表:列出元器件型号、数量和封装。规则设置:线宽、线距、过孔尺寸、阻抗控制等。湖北如何PCB设计
关键技术:高频高速与可靠性设计高速信号完整性(SI)传输线效应:反射:阻抗不匹配导致信号振荡(需终端匹配电阻,如100Ω差分终端)。衰减:高频信号随距离衰减(如FR4材料下,10GHz信号每英寸衰减约0.8dB)。案例:PCIe 5.0设计需通过预加重(Pre-emphasis)补偿信道损耗,典型预加重幅度为+6dB。电源完整性(PI)PDN设计:目标阻抗:Ztarget=ΔIΔV(如1V电压波动、5A电流变化时,目标阻抗需≤0.2Ω)。优化策略:使用多层板(≥6层)分离电源平面与地平面;增加低ESR钽电容(10μF/6.3V)与MLCC电容(0.1μF/X7R)并联。荆州打造PCB设计电源完整性:大电流路径(如电源层)需加宽铜箔,添加去耦电容以降低噪声。
散热考虑:对于发热量较大的元件,如功率放大器、电源芯片等,要合理安排其位置,并留出足够的散热空间。可以采用散热片、风扇等散热措施,确保元件在正常工作温度范围内。机械约束考虑安装尺寸:根据电路板的安装方式(如插件式、贴片式)和安装位置(如机箱内、设备外壳上),确定电路板的尺寸和外形。接口位置:合理安排电路板的输入输出接口位置,方便与其他设备进行连接。例如,将电源接口、通信接口等放置在电路板的边缘,便于接线。
器件选型选择合适的电子元件:根据电路功能需求,选择合适的芯片、电阻、电容、电感等元件。在选型时,需要考虑元件的电气参数(如电压、电流、功率、频率特性等)、封装形式、成本和可获得性。例如,在选择微控制器时,要根据项目所需的计算能力、外设接口和内存大小来挑选合适的型号。考虑元件的兼容性:确保所选元件之间在电气特性和物理尺寸上相互兼容,避免出现信号不匹配或安装困难的问题。二、原理图设计电路搭建绘制原理图符号:使用专业的电路设计软件(如Altium Designer、Cadence OrCAD等),根据元件的电气特性绘制其原理图符号。连接元件:按照电路的功能要求,将各个元件的引脚用导线连接起来,形成完整的电路图。在连接过程中,要注意信号的流向和电气连接的正确性。滤波与屏蔽:在电源入口和信号线添加滤波器,使用屏蔽罩。
20H规则:将电源层内缩20H(H为电源和地之间的介质厚度),可将70%的电场限制在接地层边沿内;内缩100H则可将98%的电场限制在内,以抑制边缘辐射效应。地线回路规则:信号线与其回路构成的环面积要尽可能小,以减少对外辐射和接收外界干扰。在地平面分割时,需考虑地平面与重要信号走线的分布。串扰控制:加大平行布线的间距,遵循3W规则;在平行线间插入接地的隔离线;减小布线层与地平面的距离。走线方向控制:相邻层的走线方向成正交结构,避免将不同的信号线在相邻层走成同一方向,以减少不必要的层间窜扰。倒角规则:走线避免出现直角和锐角,所有线与线的夹角应大于135度,以减少不必要的辐射并改善工艺性能。功能分区:将电路按功能模块划分,如数字区、模拟区、电源区。荆州打造PCB设计
PCB设计需在性能、可靠性与可制造性之间取得平衡。湖北如何PCB设计
设计验证与文档设计规则检查(DRC)运行软件DRC,检查线宽、间距、阻抗、短路等规则,确保无违规。信号仿真(可选)对关键信号(如时钟、高速串行总线)进行仿真,优化端接与拓扑结构。文档输出生成Gerber文件、装配图(Assembly Drawing)、BOM表,并标注特殊工艺要求(如阻焊开窗、沉金厚度)。总结:PCB设计需平衡电气性能、可靠性、可制造性与成本。通过遵循上述规范,结合仿真验证与DFM检查,可***降低设计风险,提升产品竞争力。在复杂项目中,建议与PCB厂商提前沟通工艺能力,避免因设计缺陷导致反复制板。湖北如何PCB设计