双频激光干涉仪不仅具有高精度,还具备普遍的应用范围。它利用激光的波长作为度量标准,可以对被测长度进行精确测量。在测距过程中,双频激光干涉仪通过检测干涉图案的变化来推导被测长度。当两束激光叠加时,它们会产生明暗相间的干涉条纹,这些条纹的位置取决于两束激光的相位差。通过测量干涉条纹的位置变化,可以得出被测物体的位移量。双频激光干涉仪的这一特性,使其在机械测量、光学测量等领域有着普遍的应用,如检定量块、量杆、刻尺和坐标测量机等。此外,双频激光干涉仪还可以用于测量角度、直线度、平面度等几何量,以及振动距离和速度等物理量,为各种测量和监测任务提供了强有力的支持。双频激光干涉仪内置自检程序,可智能诊断光路准直状态。吉林双频激光干涉仪
双频激光干涉仪的原理是基于两束频率相近的激光进行干涉测量。这种干涉仪通过激光器产生两列具有不同频率的线偏振光,通常利用塞曼效应或声光调制来实现。这两束激光,频率分别为f1和f2,经过偏振分光器后被分离为参考光和测量光。参考光保持频率稳定,而测量光则照射到被测物体上,当被测物体移动时,根据多普勒效应,测量光的频率会发生变化,变为f1±Δf,其中Δf为多普勒频移,包含了被测物体的位移信息。随后,这束频率变化后的测量光与参考光在干涉仪中汇合,形成差频信号|(f1±Δf)-f2|,该信号由光电探测器转换为电信号。这个电信号经过电路处理后,通过相位比较或脉冲计数的方式,可以精确计算出被测物体的位移量。双频激光干涉仪的这一原理使其具有高精度和抗干扰能力,即使在光强衰减较大的情况下,依然能得到稳定的测量信号。天津双频激光干涉仪测量直线度精密导轨生产线上,双频激光干涉仪每8小时完成千次自动校准。
国产双频激光干涉仪作为高精度测量领域的佼佼者,近年来在国内制造业中扮演着越来越重要的角色。这类干涉仪采用了先进的双频激光技术,能够实现对微小位移的高精度测量,其测量精度往往能达到纳米级别,甚至更高。相较于传统的单频激光干涉仪,双频激光干涉仪具有更强的抗干扰能力和更高的测量稳定性,这使其在半导体制造、精密机械加工、光学元件检测等多个领域得到了普遍应用。此外,国产双频激光干涉仪在设计上充分考虑了用户的实际需求,不仅操作简便,而且维护成本相对较低,这对于提升国内制造业的整体竞争力具有重要意义。随着技术的不断进步和成本的进一步降低,国产双频激光干涉仪的市场占有率有望持续提升。
双频激光干涉仪的基本原理是在单频激光干涉仪的基础上,结合外差干涉技术发展而来的。其重要在于双频激光器能够发出两列具有不同频率的线偏振光。这两束光在经过偏振分光器后,按照偏振方向被分离,其中一路作为参考光,另一路则作为测量光。当测量光照射到被测目标镜并反射回来时,由于多普勒效应,其频率会发生变化,这个变化量与被测目标镜的位移成正比。反射回来的测量光与参考光在干涉镜中汇合,形成干涉信号。这个干涉信号包含了被测目标镜的位移信息,通过光电探测器将其转换为电信号,并进一步处理,就可以得到被测物体的位移量。双频激光干涉仪与工业机器人协同作业,完成复杂曲面三维检测。
国产双频激光干涉仪的工作原理主要基于两束频率相近的激光的干涉现象。这种干涉仪通过特定的技术手段,如利用塞曼效应或声光调制,从激光器中产生两束频率分别为f1和f2的激光。这两束激光经过分光镜后被分为两路,一路作为参考光,其频率保持稳定;另一路则作为测量光,其频率会因被测物体的位移而产生多普勒频移Δf。当测量光经移动目标反射后与参考光叠加时,会产生一个差频信号|(f1 ±Δf) - f2|,这个信号反映了位移引起的频率变化。通过光电探测器将这一光信号转换为电信号,并经过电路处理提取出差频变化量,就可以通过相位比较或脉冲计数的方式精确计算出位移量。在粒子加速器中,双频激光干涉仪监测磁铁支撑结构的微位移。无锡FLE 光纤激光尺
该设备配备触控显示屏,支持手势操作简化复杂参数设置流程。吉林双频激光干涉仪
5530激光校准系统的工作原理还包括利用精密的光学器件进行多种几何参量的测量。例如,在机床运行路径上的多个点进行线性测量,以测量线性位移和速度;在机床工作体积的四个对角线上进行线性测量,以检查体积定位性能;以及在机床运行路径的多个点上进行角度测量,以测试围绕垂直于运动轴的旋转等。这些测量功能使得5530激光校准系统能够全方面评估机床的性能,包括定位精度、几何误差等关键指标。系统还能够记录国际标准中的机器性能,为生产经理提供每台机器的已知性能数据,从而帮助制造商优化过程控制,提高生产效率,并降低总体生产成本。这种综合性的校准解决方案,凭借其独特的可重复性和可靠性,成为了机床和CMM校准领域选择的工具。吉林双频激光干涉仪