FDS功能能够提供一种方法,通过计算**快的破坏或破坏路径来减少试验时间。根据FDS的计算,将随机或扫频正弦的能量集中到它将引起**疲劳损伤的地方,加速了测试时间。简而言之,FDS让用户了解何种振动频谱会对对象造成更大的损害,并使用该信息和其他参数(比如峰态)来减少测试时间。利用Spider-80X多通道数据采集仪(或Spider-81振动台仪)采集数据,并通过EDM随机测试功能生成疲劳损伤谱。FDS函数利用S-N曲线构建频谱分析图。S-N曲线表示对材料(S)施加的应力和应用应力(N)的循环次数。通过频谱分析图我们可以实现随机振动疲劳分析。 使用CoCo80动态信号分析系统识别或者检验减振器的特性。振动测试控制设备
Spider-80X多通道数动态测量系统、动态信号分析系统和振动系统:可伸缩变化的动态测量系统Spider-80X是一个结构上高度模块化、真正分布式和可伸缩变化的动态测量系统。它是需要方便和精确的数据记录、实时信号分析和振动等应用领域的理想设备,可广泛应用于机械状态监测、汽车、民用飞行器、工业制造、大学研究教育、电子领域。多个Spider-80X模块可以组成一个多通道测量系统,根据不同的机箱组成16通道动态信号分析系统、32通道数据采集系统、64通道振动系统。多个机箱在因特网中通过Spider-Hub组成更高输入通道的Spider系统,所有通道可以同步采样。多个Spider模块可以通过IEEE1588协议进行精确的时间同步,从而所有通道在频域上可以获得完美的相位匹配特性。这些通道可以位于同一个或不同的模块上。 振动测试控制设备Spider-80Xi,64多通道网络化系统。
高动态测量范围Spider的性能在同行业的高动态测量范围的产品中位于前列,拥有专利,160dB的输入通道测量范围(在时域中定义)。每个测量通道检测小至6μV和大至±20V这种高动态范围技术使得Spider80X不需要象传统数据采集设备那样设置输入量程/放大系数。Spider80X采用高速浮点DSP处理器管理数据输入/输出,并进行实时处理,同时配置了大容量的RAM和板上闪存用于海量数据存储。特别的散热和低功耗设计使得不需要冷却风扇,从而降低了能耗并降低噪声。
Spider-80SG是建立在IEEE1588上的时间同步技术。在同一个网络下,Spider前端可以达到50ns精度同步,保证相邻道相位匹配为±1^°@20kHz。这样独特的技术和高速以太网数据传输,使得网络连接的分布式组件如一个集成系统。LOCALSENSING功能作为验证精度的一部分,Spider-80SG采用晶钻仪器的localsensing功能可以校准测试。localsensing验证设备实际测量的精度,而设备的精度在出厂前已被调置。泊松比参数泊松比作为Spider-80SG系统的一个测量参数。用户将可以自定义一个泊松比的值,或直接根据测试或测试配置来设置。兼容测量量和推荐传感器Spider-80SG支持各种测量量的多种传感器。以下列表概括了一些支持测量量的传感器,现实中兼容的传感器绝不仅限于列表所包含的。加速度传感器–Dytran7603B,7503,7523A2,Endevco7264C,KistlerType8395A,DTS6DXPROseries力传感器–OmegaLCM901,FutekFFP350扭矩传感器–OmegaTQ-130Series,FutekTDD400,FutekTRS300,FutekTAT200,TAT420压力传感器–OmegaPX309series,MeasurementSpecEB100,FutekPMP927角速度传感器–DTSARSPro-300,ARSPro-1500,ARSPro-8K,ARSPro-18k位移传感器–OmegaE2E-3DCSeries。 Spider-80Xi,32多通道网络化系统。
声学测量的执行有多种原因,包括:产品设计、生产测试、机器性能和过程。Spider系列(Spider-80X、Spider-80Xi)具有声学测量功能,包括实时倍频程谱、1/3倍频滤波器和声级计功能。为获取和查看声音信号提供了一个易用而强大的工具箱。对噪声问题进行详细的研究,可以同时进行数字倍频带滤波器和原始数据记录。Spider系列满足更多通道测试的要求,**多可达512个频道。IEPE(ICP®)接入允许直接连接使用时预极化的ICP麦克风前置放大器。传统的电容麦克风也很容易通过将来自麦克风电源的电压信号与输入通道连接起来。使用波形发生器可以产生白噪声和粉红噪声信号。这个特性在使用扬声器进行吸收测量时非常有用。 Spider- 8 0 X高通道动态数采系统用于环境测试。江苏冲击控制应用
多轴振动系统MIMO-VCS。振动测试控制设备
动态信号分析仪的一个常见应用是测量机械系统的频率响应函数(FRF)。这也称为网络分析,系统的输入和输出同时测量。通过这些多通道测量,分析仪可以测量系统如何“改变”输入。一个常见的假设是,如果系统是线性的,那么这个“变化”被频率响应函数(FRF)充分描述。事实上,对于线性和稳定的系统,只要知道频率响应函数,就可以预测系统对任何输入的响应。宽带随机、正弦、阶跃或瞬态信号在测试和测量应用中被***地用作激励信号。图1说明了一个激励信号x,可以应用于一个UUT(测试单元),并生成一个或多个由y表示的响应,输入和输出之间的关系称为传递函数或频率响应函数,由H(y,x)表示。一般来说,传递函数是一个复杂的函数,描述系统如何将输入信号的大小和相位作为激励频率的函数。振动测试控制设备