热敏电阻的性能很大程度上取决于其制作材料。常用的半导体材料,如金属氧化物,具有独特的晶体结构和电子特性。这些材料中的原子通过化学键相互连接,形成晶格结构。当温度改变时,晶格振动加剧,电子的运动状态也随之变化。以负温度系数(NTC)热敏电阻常用的锰钴镍氧化物为例,温度升高时,电子更容易从价带跃迁到导带,增加了载流子浓度,从而降低了电阻。而正温度系数(PTC)热敏电阻的典型材料钡钛矿陶瓷,在居里点附近,晶体结构发生相变,导致电子迁移率急剧下降,电阻值大幅上升。这些材料的特性使得热敏电阻能够精细感知温度变化,将温度信号转化为电信号。热敏电阻的测量电路通常包括分压电路、电流源电路等,用于将电阻值转换为电压或电流信号输出。南京洗衣机热敏电阻供应商
热敏电阻可以作为电子线路元件用于仪表线路温度补偿和温差电偶冷端温度补偿等。利用NTC热敏电阻的自热特性可实现自动增益控制,构成RC振荡器稳幅电路,延迟电路和保护电路。在自热温度远大于环境温度时阻值还与环境的散热条件有关,因此在流速计、流量计、气体分析仪、热导分析中常利用热敏电阻这一特性,制成检测元件。PTC热敏电阻主要用于电器设备的过热保护、无触点继电器、恒温、自动增益控制、电机启动、时间延迟、彩色电视自动消磁、火灾报警和温度补偿等方面。南京主板热敏电阻型号NTC热敏电阻通常有不同的封装形式,包括贴片式和穿孔式,以适应不同的安装需求。
热敏电阻的性能优劣,很大程度上取决于其制造材料的特性。用于制作热敏电阻的半导体材料,具有独特的电学和热学性质。常见的半导体材料如锰、钴、镍等过渡金属氧化物,这些材料的晶体结构中存在大量的缺陷和杂质能级。当温度变化时,载流子能够在这些能级间跃迁,从而明显改变材料的电导率,体现为电阻值的变化。例如,在负温度系数(NTC)热敏电阻常用的锰氧化物中,温度升高促使更多电子从价带跃迁到导带,增加了载流子数量,降低了电阻。正温度系数(PTC)热敏电阻的典型材料钡钛矿陶瓷,在居里点附近,晶体结构的变化导致载流子迁移率急剧下降,电阻值随之飙升。这些材料对温度变化的灵敏响应,赋予了热敏电阻在温度检测领域的独特优势。
热敏电阻合金已开始日益普遍地用于温度的监测和撞制。如在环境监测、食品的长期储存、生物工程等方面都获得了普遍的应用。热敏电阻合金一般均具有较高的电阻率和电阻温度系数,因此可以制成小型化的高灵敏度的测温传感器。如箔式应变片式测温传感器就是一种理想的结构件温度测景元件。此外热敏电阻合金在高性能飞机的大气总温传感器和大型客机温度传感器中也获得了一定的应用。可见,热敏电阻合金的优越性将日趋有效。热敏电阻符号是PTC,阻值随温度的变化而变化,有正温度型的负温度型,压敏电阻阻值随压力的变化而变化。由于NTC热敏电阻对温度变化的响应速度快,常用于快速温度感应应用。
热敏电阻使用注意事项:1、为了减少热敏电阻的时效变化,应尽可能避免处于温度急骤变化的环境。2、施加过电流时要注意。过电流将破坏热敏电阻。3、开始测量的时间,应为经过时间常数的5-7倍以后再开始测量。4、当热敏电阻采用金属保护管时,为减少由热传导引起的误差,要保证有足够的插入深度。当介质为水和气体时,其插入深度应分别为管径的15倍与25倍以上。5、如果引线间或者绝缘体表面上附着有水滴或尘埃时,将使测量结果不稳定并产生误差,因此,要注意使热敏电阻具有防水、耐湿、耐寒等性能。6、由自身加热引起的误差。热敏电阻元件体积很小,电阻值却很高,由自身电流加热很容易产生误差。为减少此误差,将测量电流变小是很必要的。由于PTC热敏电阻的稳定性和可靠性高,因此在工业控制领域得到了普遍应用。南京主板热敏电阻型号
热敏电阻是一种温度敏感的器件,其电阻值会随着温度的变化而变化。南京洗衣机热敏电阻供应商
热敏电阻的主要特点是:热敏电阻①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(较高可达到2000℃),低温器件适用于-273℃~-55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强。南京洗衣机热敏电阻供应商