热敏电阻的技术参数:1、测量功率Pc:在规定的环境温度下,热敏电阻体受测试电流加热而引起的阻值变化不超过0.1%时所消耗的电功率。2、较大电压:对于NTC热敏电阻器,是指在规定的环境温度下,不使热敏电阻器引起热失控所允许连续施加的较大直流电压;对于PTC热敏电阻器,是指在规定的环境温度和静止空气中,允许连续施加到热敏电阻器上并保证热敏电阻器正常工作在PTC特性部分的较大直流电压。3、较高工作温度Tmax:在规定的技术条件下,热敏电阻器长期连续工作所允许的较高温度。热敏电阻的材料不同,其热敏特性也不同。宁波电磁炉热敏电阻报价表
实验表明,在工作温度范围内,PTC热敏电阻的电阻-温度特性可近似用实验公式表示:R(T)=R(T0)*exp(Bp(T-T0))。式中R(T)、R(T0)表示温度为T、T0时电阻值,Bp为该种材料的材料常数。PTC效应起源于陶瓷的粒界和粒界间析出相的性质,并随杂质种类、浓度、烧结条件等而产生明显变化。较近,进入实用化的热敏电阻中有利用硅片的硅温度敏感元件,这是体型小且精度高的PTC热敏电阻,由n型硅构成,因其中的杂质产生的电子散射随温度上升而增加,从而电阻增加。宁波电磁炉热敏电阻报价表热敏电阻的电路布局应合理,以避免干扰和噪声。
热敏电阻的工作原理:环境温度对高分子PTC热敏电阻的影响高分子PTC热敏电阻是一种直热式、阶跃型热敏电阻,其电阻变化过程与自身的发热和散热情况有关,因而其维持电流(ihold)、动作电流(itrip)及动作时间受环境温度影响。当环境温度和电流处于a区时,热敏电阻发热功率大于散热功率而会动作;当环境温度和电流处于b区时发热功率小于散热功率,高分子PTC热敏电阻由于电阻可恢复,因而可以重复多次使用。为热敏电阻动作后,恢复过程中电阻随时间变化。电阻一般在十几秒到几十秒中即可恢复到初始值1.6倍左右的水平,此时热敏电阻的维持电流已经恢复到额定值,可以再次使用了。面积和厚度较小的热敏电阻恢复相对较快;而面积和厚度较大的热敏电阻恢复相对较慢。
决定NTC热敏电阻精度的因素有哪些?精度是NTC热敏电阻一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。NTC热敏电阻的精度越高,其价格越昂贵,因此,NTC热敏电阻的精度只要满足整个测量系统的精度要求就可以。决定NTC热敏电阻精度的因素有以下两点:①NTC热敏电阻本身的误差。NTC热敏电阻的阻值误差、B值误差越小,测量精度越高。②NTC热敏电阻的感温头与测温对象的接触方式。直接接触的比间接接触的测量精度要高,另外NTC热敏电阻的R-T曲线是非线性的,它不可能保证在很宽的工作温度范围内的精度都是一样的。因此,要想得到较高的测量精度,选定工作场合的中心工作温度点(一般中心工作温度点精度较高,根据R-T曲线的离散性,离中心工作温点越远的温度点,精度误差会逐渐加大)。热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。
临界温度热敏电阻:临界温度热敏电阻(CTR,即CriticalTemperatureResistor)具有负电阻突变特性,在某一温度下,电阻值随温度的增加激剧减小,具有很大的负温度系数。构成材料是钒、钡、锶、磷等元素氧化物的混合烧结体,是半玻璃状的半导体,也称CTR为玻璃态热敏电阻。骤变温度随添加锗、钨、钼等的氧化物而变。这是由于不同杂质的掺入,使氧化钒的晶格间隔不同造成的。若在适当的还原气氛中五氧化二钒变成二氧化钒,则电阻急变温度变大;若进一步还原为三氧化二钒,则急变消失。产生电阻急变的温度对应于半玻璃半导体物性急变的位置,因此产生半导体-金属相移。CTR能够作为控温报警等应用。热敏电阻具有较高的精度和稳定性。汕头负温度系数热敏电阻生产厂家
热敏电阻的材料稳定性和电学性能随着工作温度的变化而变化。宁波电磁炉热敏电阻报价表
热敏电阻的特点:热敏电阻是开发早、种类多、发展较成熟的敏感元器件。热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。热敏电阻主要特点有灵敏度较高;工作温度范围宽;体积小;使用方便;易加工成复杂的形状,可大批量生产;稳定性好、过载能力强。由于半导体热敏电阻有独特的性能,所以在应用方面它不只可以作为测量元件,还可以作为控制元件和电路补偿元件。热敏电阻普遍用于家用电器、电力工业、通讯科学、宇航等各个领域,发展前景极其广阔。宁波电磁炉热敏电阻报价表