大量的开关动作是由无触点的半导体电路来完成的,在结构上充分考虑了工业生产环境下温度、湿度、粉尘、振动等方面的影响:在硬件上采用了隔离、滤波、屏蔽、接地等抗干扰措施;在软件上采用了故障诊断、数据保护等措施。这些技术使得 PLC 具有较高的抗干扰能力。目前各个厂家...
逐步完成功能设计之后,设计规则会指明哪些设计匹配制造要求,而哪些设计不匹配,而这个规则本身也十分复杂。集成电路设计流程需要匹配数百条这样的规则。在一定的设计约束下,集成电路物理版图的布局、布线对于获得理想速度、信号完整性、减少芯片面积来说至关重要。半导体器件制...
PLC的选择主要应从PLC 的机型、容量、I/O模块、电源模块、特殊功能模块、通信联网能力等方面加以综合考虑。PLC机型选择的基本原则是在满足功能要求及保证可靠、维护方便的前提下,力争的性能价格比。选择时应主要考虑到合理的结构型式,安装方式的选择,相应的功能要...
UI设计从工作内容上来说分为3个方向。图 它主要是由UI 研究的3个因素决定的, 其分别是研究工具,研究人与界面的关系,研究人。研究界面----图形设计师Graphic UI designer国内目前大部分UI工作者都是从事这个行业。也有人称之为美工,但实际上...
常见的伺服电机包括直流伺服电机、交流伺服电机以及无刷直流伺服电机等。伺服驱动器:驱动器负责接收来自控制器的指令,并将其转换为伺服电机可识别的电信号,同时监测电机的运行状态并反馈给控制器,形成闭环控制。控制器:作为系统的“大脑”,控制器根据预设的程序或外部输入信...
实际硬件电路会遇到的与理想情况不一致的偏差,例如温度偏差、器件中半导体掺杂浓度偏差,计算机仿真工具同样可以进行模拟和处理。总之,计算机化的电路设计、仿真能够使电路设计性能更佳,而且其可制造性可以得到更大的保障。尽管如此,相对数字集成电路,模拟集成电路的设计对工...
伺服系统对于环境的要求较高,如温度、湿度等因素都会对系统的性能产生影响。伺服系统具有许多优势,可以实现高精度、高速度和高可靠性的运动控制。然而,伺服系统的设计和应用也面临一些挑战,需要综合考虑各种因素,以实现的性能和经济效益。伺服系统在工业自动化中有着的应用,...
安装方式PLC系统的安装方式分为集中式、远程I/O式以及多台PLC联网的分布式。 集中式不需要设置驱动远程I/O硬件,系统反应快、成本低;远程I/O式适用于大型系统,系统的装置分布范围很广,远程I/O可以分散安装在现场装置附近,连线短,但需要增设驱动器和远程I...
设计人员完成寄存器传输级设计之后,会利用测试平台、断言等方式来进行功能验证,检验项目设计是否与之前的功能定义相符,如果有误,则需要检测之前设计文件中存在的漏洞。现代超大规模集成电路的整个设计过程中,验证所需的时间和精力越来越多,甚至都超过了寄存器传输级设计本身...
建议在项目开发阶段建立一个产品词典,包括产品中常用术语及描述,设计或开发人员严格按照产品词典中的术语词汇来展示文字信息。使用一致的标记、标准缩写和颜色,显示信息的含义应该非常明确,用户不必再参考其它信息源。显示有意义的出错信息,而不是单纯的程序错误代码。避免使...
在智能物流领域,伺服系统被应用于自动化仓储、分拣、配送等环节。通过精确控制堆垛机、分拣机器人等设备的运动轨迹和速度,实现货物的快速、准确处理。同时,结合物联网、大数据等技术,伺服系统还能够实现物流信息的实时追踪和智能调度,提高物流效率和客户满意度。随着技术的不...
保持语言的一致性,如“确定”对应“取消”,“是”对应“否”。布局合理化原则在进行UI设计时需要充分考虑布局的合理化问题,遵循用户从上而下,自左向右浏览、操作习惯,避免常用业务功能按键排列过于分散,以造成用户鼠标移动距离过长的弊端。多做“减法”运算,将不常用的功...
工程师设计的硬件描述语言代码一般是寄存器传输级的,在进行物理设计之前,需要使用逻辑综合工具将寄存器传输级代码转换到针对特定工艺的逻辑门级网表,并完成逻辑化简。和人工进行逻辑优化需要借助卡诺图等类似,电子设计自动化工具来完成逻辑综合也需要特定的算法(如奎因-麦克...
主要特点精确的检测装置:以组成速度和位置闭环控制;有多种反馈比较原理与方法:根据检测装置实现信息反馈的原理不同,伺服系统反馈比较的方法也不相同。常用的有脉冲比较、相位比较和幅值比较3种;高性能的伺服电动机(简称伺服电机):用于高效和复杂型面加工的数控机床,伺服...
在智能物流领域,伺服系统被应用于自动化仓储、分拣、配送等环节。通过精确控制堆垛机、分拣机器人等设备的运动轨迹和速度,实现货物的快速、准确处理。同时,结合物联网、大数据等技术,伺服系统还能够实现物流信息的实时追踪和智能调度,提高物流效率和客户满意度。随着技术的不...
智能控制:结合模糊控制、神经网络等人工智能技术,使伺服系统具备更强的自学习和自适应能力,应对复杂多变的控制任务。未来,伺服系统的控制策略将更加注重智能化、网络化和集成化。通过引入更先进的算法和技术,如深度学习、云计算等,实现更、更高效的控制,推动工业自动化向更...
PLC 制造商目前已提供了步进电动机或伺服电动机的单轴或多轴位置控制模块。在多数情况下,PLC 把描述目标位置的数据发送给控制模块,其输出移动一轴或数轴以达到目标位置。每个轴移动时,位置控制模块保持适当的速度和加速度,确保运动平滑。相对来说,位置控制模块比计算...
伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统应用于各种机械设备中,如工业机器人、数控机床、印刷设备等。它可以实现高精度、高速度和高可靠性的运动控制,提高生产效率和产品质量。伺服系统还可以根据不同的...
伺服电机:具有高精度、高响应速度的特点,能够在宽调速范围内实现平滑无级调速,是实现精确控制的关键。位置传感器:通常采用编码器或解析器,用于实时检测电机的位置信息,确保系统闭环控制的准确性。控制器:集成先进的控制算法,如PID控制、矢量控制等,根据反馈信号调整控...
PLC的选择主要应从PLC 的机型、容量、I/O模块、电源模块、特殊功能模块、通信联网能力等方面加以综合考虑。PLC机型选择的基本原则是在满足功能要求及保证可靠、维护方便的前提下,力争的性能价格比。选择时应主要考虑到合理的结构型式,安装方式的选择,相应的功能要...
人机界面的使用方法,明确监控任务要求,选择适合的HMI产品,在PC机上用画面组态软件“工程文件”,测试并保存已好的“工程文件”,PC机连接HMI硬件,下载“工程文件”到HMI中,连接HMI和工业控制器(如PLC、仪表等),实现人机交互,-所有高效能 HMI具备...
发展方向:随着生产力不断发展,要求伺服系统向高精度、高速度、大功率方向发展。充分利用迅速发展的电子和计算机技术,采用数字式伺服系统,利用微机实现调节控制,增强软件控制功能,排除模拟电路的非线性误差和调整误差以及温度漂移等因素的影响,这可提高伺服系统的性能,并为...
实际硬件电路会遇到的与理想情况不一致的偏差,例如温度偏差、器件中半导体掺杂浓度偏差,计算机仿真工具同样可以进行模拟和处理。总之,计算机化的电路设计、仿真能够使电路设计性能更佳,而且其可制造性可以得到更大的保障。尽管如此,相对数字集成电路,模拟集成电路的设计对工...
沉下心来仔细观察用户的喜好,并了解他们的技能水平和体验,并观察他们在界面中如何操作。不要迷恋于追逐设计趋势的更新,或是不断添加新的功能。始终记住,首要的任务是关注你的用户,这样才能创造出一个能让用户达成目标的界面。在软件中,用户的大部分时间都消耗在界面操作中(...
形式等效性检查为了比较门级网表和寄存器传输级的等效性,可以通过生成诸如可满足性、二元决策图等途径来完成形式等效性检查(形式验证)。实际上,等效性检查还可以检查两个寄存器传输级设计之间,或者两个门级网表之间的逻辑等效性。时序分析现代集成电路的时钟频率已经到达了兆...
伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处...
伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处...
人机界面常识人机界面产品的定义 连接可编程序控制器(PLC)、变频器、直流调速器、仪表等工业控制设备,利用显示屏显示,通过输入单元(如触摸屏、键盘、鼠标等)写入工作参数或输入操作命令,实现人与机器信息交互的数字设备,由硬件和软件两部分组成。人机界面(HMI)...
软件设计可分为两个部分:编码设计与UI设计。编码设计大家都很熟悉,但是UI设计还是一个很陌生的词,即使一些专门从事网站与多媒体设计的人也不完全理解UI的意思。UI的本意是用户界面,是英文User和 interface的缩写。从字面上看是用户与界面2个组成部分,...
才能做到听到后及时反馈由于需要实时响应,以及唤醒模型对算力要求不高等方面原因,一般唤醒模型是做在本地的(区别于云端的ASR识别)。Air手势是一种技术,允许您使用手势控制电子设备,无需操作触摸屏或其他输入设备。爆发后,人们一直非常关注需要少接触的界面。空气手势...