微射流高压均质机功能,微射流均质机可以将乳化体系和混悬分散体系物料的粒径均质到纳米级且均一的状态,以此提升相关产品的各项功能性指标,比如脂质体药物的缓释性、靶向性,稳定性,难溶药物的溶解度提高、细化混悬,化妆品的包封保护活性、降低异味、高透的外观、纳米材料的提高催化性能、导电导热性能、磨料性能以及各种纳米功能性等等。微射流高压均质机特点以及与一代高压均质机的区别:主要处理单元差别:微射流高压均质机主要处理单元:特定内部结构的微射流金刚石交互容腔,也称固定线性孔道式均质腔;一代高压均质机主要处理单元:分体式高压均质阀,由底座、冲击环、阀芯组成。两代设备处理过程都用到高压,都有高速液流产生,但较大的区别在于主要部件,两种主要处理单元在物料处理过程中发生的反应有明显差别。在高速液体切割、剪切、碰撞作用下,微射流均质机实现颗粒精细化。黑龙江金刚石内腔微射流均质机
由于碳纳米管之间存在着比较强的范德华力,导致很容易缠绕在一起或者团聚成束,严重制约了碳纳米管的应用。如何提高碳纳米管的分散性成为目前迫切需要解决的问题。物理法是比较常用的分散碳纳米管的方法,超声法是一种物理方法,常在实验室内使用,但这种方法存在分散不完全,容易造成碳纳米管损伤,无法连续大规模生产等问题。微射流R高压均质机使通过微通道的物料产生高速微射流,利用物理剪切、对撞、空穴效应等物理作用力,将碳纳米管团聚打开,并均匀分散在溶剂中,可以有效提高swcnts束的分散效率。黑龙江金刚石内腔微射流均质机高压微射流有助于提高难溶药物的溶解速度和溶解度。
高压微射流在CMP抛光液中的应用,化学机械抛光(CMP)技术具有独特的化学和机械相结合的效应,是在机械抛光的基础上,根据所要抛光的表面,加入相应的化学试剂,从而达到增强抛光和选择性抛光的效果?;Щ蹬坠饧际跏瞧穸酪豢梢蕴峁┱迤矫婊谋砻婢庸ぜ际酰谴釉铀缴辖胁牧先コ?,从而获得超光滑和较低损伤表面,该技术普遍应用于光学元件、计算机硬盘、微机电系统、集成电路等领域。抛光液是化学机械抛光技术的关键之一,其性能直接影响着被抛光工件的表面质量。
高压均质机的原理,柱塞泵通过不断的往复运动,将物料吸入阀组中(图1),柱塞可调节压力的大小。物料在高压下其流过缝隙时,液滴首先被延伸,后因通过阀体时的湍流作用,使延伸部分剪切拉碎。从阀缝中高速冲出的液流撞上挡圈,产生高速的撞击作用。同时,压力迅速大幅下降,产生很大的爆破力,瞬时引起空穴现象,强烈释放的能量和强烈的高频振动,使颗?;蛞旱纹扑椋佣锏揭禾逖肪省⒎鬯楹腿榛男ЧR旱卧诹弦航诖π叩木惭鼓埽诰使讨校惭鼓茏闪硕?,使液滴破裂。微射流均质机能处理热敏感物料,保持活性成分不受破坏。
主要部件的区别,高压均质机,主要部件:分体狭缝式均质阀。使用时均质阀座与均质阀芯通过撞击环安装贴合,当均质柱塞泵将样品吸入并输送至均质主要部位时,样品由前端挤入至均质阀座孔内。均质阀座的孔道比前端管道小很多,所以样品急速加速,并将均质阀座和均质阀芯挤出一条缝隙,样品由此缝隙高速喷出,并经冲击环撞击后喷射而出,完成均质。在此过程中,从狭缝中喷出的瞬间由于存在高压力,并且样品喷出后与撞击环内侧的撞击力及粒子之间的剪切力共同作用,使样品粒子达到粒径减小的效果。均质阀座与均质阀芯之间的狭缝大小,影响样品冲破缝隙所承受的阻力,此阻力的大小即为均质的压力,一般来说阻力越大,即均质压力越高、喷出速度越高、与冲击环之间的撞击力也越强,均质能力就越强,粒径就越小。而均质压力大小的调节通过手轮,调节均质阀座与均质阀芯之间的间距来实现。微射流均质机,利用高压微射流技术,对物料进行高效精细混合,提升产品质量。湖南脂质体微射流均质机
微射流均质机在高粘度物料的处理中表现优异。黑龙江金刚石内腔微射流均质机
微射流高压均质机优势:1、微射流高压均质机是新一代的高压均质机,其独特的金刚石微孔道超音速对射流技术可以做到更小更均一的纳米级粒径,相较于普通高压均质机有能力做各行业中粒径分布要求极高、附加值较高的应用。2、微射流高压均质机的主要均质部件是金刚石交互容腔,与普通高压均质机可调节间隙的均质阀不同的是,其内部的微孔道是固定尺寸不可调节的,在使用同种型号金刚石交互容腔且是相同均质工艺参数条件下,可以保证批次间产品的粒径结果非常稳定。黑龙江金刚石内腔微射流均质机