2.15Q/GDWZ410高压设备智能化技术导则。2.16Q/GDWZ414变电站智能化改造技术规范。2.17Q/GDW561输变电设备状态监测系统技术导则。2.18Q/GDW739输变电设备状态监测主站系统变电设备在线监测I1接口网络通信规范。2.19Q/GDW1168-2013输变电设备状态检修试验规程。2.20JB/T8314分接开关试验导则。2.21国家电网公司变电监测管理规定(试行)第11分册机械振动监测细则。2.22IEC60214.1Tap-changersPart1:PerformanceRequirementsandTestMethods。2.23IEC60214.2Tap-changersPart2:ApplicationGuidelines。2.24IEEEC57.131IEEEStandardRequirementsforTapChanger。2.25IEEEC57.139IEEEGuideforDissolvedGasAnalysisinTransformerLoadTapChangers。2.26IEEEC57.143IEEEGuideforApplicationforMonitoringEquipmenttoLiquid-ImmersedTransformersandComponents。2.27CIGREWorkingGroupA2.34GuideforTransformerMaintenance。杭州国洲电力科技有限公司振动声学指纹在线监测功能的远程监控能力。变压器声纹振动声学指纹在线监测监测文献
确保采集到的振动和声学数据具有足够的准确性和分辨率,以便于识别设备的正常运行状态与异常情况,可以采取以下措施:
选择合适的传感器:根据被监测设备的特性和监测要求选择适当类型和规格的振动和声学传感器。传感器应具有高灵敏度和适当的频率响应范围。校准传感器:定期对传感器进行校准,以确保其输出与实际测量值之间的准确对应关系。优化采样频率:根据设备的动态特性和可能发生的故障类型,设置合适的采样频率,以捕捉到振动和声学信号的关键特征。减少噪声干扰:采取措施减少环境噪声和电磁干扰,如使用屏蔽电缆、设置隔振平台、选择低噪声环境进行测量等。数据预处理:采用滤波、去噪等数据预处理技术,提高信号质量,减少噪声的影响。多传感器融合:使用多个传感器并结合不同的测量位置,可以提高数据的冗余性和鲁棒性,从而增强信号的准确性。动态范围调整:根据设备的运行状态调整测量系统的动态范围,确保在设备运行在不同负载条件下都能获得清晰的信号。数据后处理和特征提取:应用高级信号处理技术,如时频分析、小波变换等,提取出反映设备状态的关键特征。 变压器声纹振动声学指纹在线监测监测技术交流杭州国洲电力科技有限公司振动声学指纹在线监测的概述。
3.2.3平台层的云服务器数据经现场传感器采集并经过IED/主机处理后,通过通信模块(4G/5G无线传输或电力光纤专网)传送至云服务器进行存储及深度计算,平台层的操控计算机(含通过IEC61850通讯管理连接的远端)可通过浏览器登录云服务器随时随地查看监测数据,对变压器进行运行监测及诊断分析。云服务器采用B/S结构(浏览器/服务器模式),提供监测数据的深度计算、存储、浏览器查看等服务。
3.2GZAFV-01系统的系统架构GZAFV-01系统由感知层的声纹振动传感器、电流传感器、IED/主机,网络层的通讯管理里,平台层的数据(云)服务器、内置操控及监测数据分析软件的操控计算机、IEC61850通讯管理机等构成。
近年来,国家电网公司状态检修工作不断深化,对设备可靠性的要求不断提高,及时、有效发现GIS内部潜伏性缺陷,保证GIS安全稳定运行、合理安排检修周期成为状态检修模式下的当务之急。目前针对GIS较成熟的监测方法,主要有电气法、声测法及化学分析法三大类,以上监测方法均针对的是放电性故障所产生的电磁、声、光、电弧分解产物等物理量。但在GIS的运行中,除了放电性故障之外,机械性故障也是导致事故发生的一大主要原因,当GIS存在开关触头接触异常、壳体对接不平衡、导杆轻微弯曲等缺陷时,在开关操作的机械力、负载电流产生的交变电动力等因素的作用下会产生机械性运动,造成设备异常振动。GIS的异常振动对其本体有很大危害,会造成SF6气体泄露、盆式绝缘子和绝缘支柱损伤、外壳接地点悬浮等缺陷,长期发展可能导致绝缘事故的发生。因此,加强对GIS机械性故障的监测,是保证GIS安全运行的重要手段。杭州国洲电力科技有限公司的企业简介与主要技术优势。
3.3.2绕组及铁芯运行状态分析下图3.10a为变压器运行时绕组及铁芯的声纹振动时域信号。为更直观地分析绕组及铁芯运行状态,采用频域法分析声纹振动信号。如下图3.10b所示,基于声纹振动信号的频域分布,提取峰值频率、总谐波畸变率、基频能量比、互相关系数特征参量作为分析参数。各特征参量定义及解释如下:
3.3.2.1峰值频率:频谱图中比较大幅值对应的频率值。3.3.2.2总谐波畸变率(TotalHarmonicDistortion,THD)所有50Hz整数倍谐波分量的有效值与基频100Hz分量有效值的比值,计算公式:THD=i=0nVi2V1,其中V1为100Hz基频分量有效值,Vi为各谐波分量有效值,i为频率索引值。正常状态下,由于100Hz基频分量为振动频谱图的主要成分,总谐波畸变率应较小;存在故障时,谐波分量增加且峰值频率发生偏移,总谐波畸变率变大 GZAFV-01型声纹振动监测系统(开关设备)智能评估和故障预警。变压器声纹振动声学指纹在线监测监测文献
杭州国洲电力科技有限公司振动声学指纹在线监测技术的实际应用价值。变压器声纹振动声学指纹在线监测监测文献
3.2.1感知层的传感器GZAFV-01系统的感知层如上图3.1所示,由IED/主机、6路声纹振动传感器、1路电流传感器等构成,声纹振动传感器集成电荷放大器,将声纹振动信号转换成与之成正比的电压信号;电流传感器采用微型卡扣结构,便于现场安装。各传感器外观及参数如下表1所示。◆3路声纹振动传感器采集取OLTC振动信号,通过固定底座安装在变压器外壁,安装位置选取平行于OLTC的垂直传动杆方向,且尽量靠近OLTC的触头组处。◆1路电流传感器采集OLTC驱动电机电流信号,安装于OLTC驱动电机电源线处。◆3路声纹振动传感器采集变压器绕组及铁芯声纹振动信号,安装位置选取于上夹件底部、非冷却器侧油箱表面中部、油箱顶部中心点。为保持监测点的同一性,便于后期监测数据的时间轴线比对,所有声纹振动传感器底座长期固定在变压器外壁上。安装示意图如下图3.2所示。(备注:传感器安装的数量及位置可根据被测设备的监测需求而灵活调整)变压器声纹振动声学指纹在线监测监测文献