自从微气泡作为超声造影剂被引入以来,它已经展示了在床边彻底改变超声使用的潜力。除了临床应用外,微泡用于增强心肌灌注的超声评估,它们还在令人兴奋的临床前超声成像和***应用中展示了潜力。其中包括针对疾病的特定细胞标志物,提供动态血流估计,提供局部化疗,增强基因***机制,通过空化增强病变消融和时空渗透血脑屏障的能力。微泡独特而灵活的结构不*使各种超声应用成为可能,也为用超声以外的方式检测微泡打开了大门。MRI成像利用**度磁场增强的水质子产生的信号。**近,人们对核磁共振成像的替代品越来越感兴趣,标准钆基MR造影剂对肾功能受损患者有危及生命的副作用。然而,MR对比的机制与超声衰减和散射有明显不同。主要涉及两种对比机制,T1或自旋晶格机制导致局部信号增强,T2是自旋自旋机制导致局部信号损失。微泡在MR研究中的适用性是由于在微泡的顺磁性气体**与周围**之间的界面处诱导了局部磁化率差异,主要是T2效应。自第一种超声造影剂问世以来,放射性标记微泡已被用于监测气泡的生物分布。然而,为了用伽马计数器进行离体生物分布测量,这些研究中的动物必须被**。**近,PET已被用于检测放射性标记的微泡,这允许实时测量和*代动力学研究。超声造影剂在体外和体内均显示出良好的结合效率。北京肺靶向超声微泡
搭载了药物的靶向微泡造影剂,为***疾病提供了新的思路。气体填充的微泡在声学脉冲***时,可产生大的体积振荡,一旦静脉注射,可作为空化核,用于各种超声辅助药物递送应用。微泡可采用各种药物加载技术和靶向策略,用于递送生物活性物质,如多核苷酸、蛋白质、基因和小分子药物等,可用于多种诊断和***目的,准确检测和***各种危及生命的疾病7。例如,一种新型酸度响应纳米级超声造影剂(L-Arg@PTX纳米液滴)被构建用于共同递送紫杉醇(PTX)和L-精氨酸(L-Arg)。该纳米液滴具有良好的超声诊断成像能力,改善了**聚集并实现了超声触发的药物释放,可防止药物过***漏,从而提高生物安全性。结合超声靶向微泡破坏(UTMD),可增加细胞活性氧(ROS),将L-Arg转化为一氧化氮(NO),从而缓解缺氧、增敏化疗并增加CD8+细胞毒性T淋巴细胞(CTLs)浸润,与化疗药物诱导的免疫原性细胞死亡(ICD)相结合,可*******的协同作用,实现强大的*****效果。肺靶向超声微泡血管荧光标记的靶向微泡在血管生成过程中的应用。
提高成像对比度在超声调制光学成像技术中,结合高灵敏度的激光回馈技术提出的超声调制激光回馈技术,建立了含微泡介质的蒙特卡罗光子传输模型。研究表明,在透明溶液中,超声微泡造影剂可以增强超声调制激光回馈信号,并产生谐波调制,通过检测回馈基波和谐波信号增强量的方法可提高成像对比度2。而在仿生物组织环境中,超声微泡造影剂可***衰减超声调制激光回馈信号,通过检测回馈基波和谐波信号衰减量的方法可提高成像对比度2。改善超声成像性能相干多探头超声成像系统中,使用微泡产生点目标,可实现相干组合多个探头接收的射频数据集,获得更大的有效孔径,从而改善超声成像性能。首先在感兴趣的成像区域引入稀疏的微泡群,然后通过类似于超声超分辨率成像的方法对其进行检测和定位,***利用定位的微泡计算比较好波束形成参数,包括换能器位置和声速平均值4。
改善成像性能相干的多换能器超声成像系统通过多个换能器的相干组合使得能够延长有效孔径。本研究提出使用微泡来生成该系统所需的点状目标。由此产生的较大的有效孔径改善了超声成像性能279。Golay相位编码、脉冲反转和幅度调制(GPIAM)技术用于微泡造影剂成像,通过增加激励波形的时间带宽积提高了对比组织比(CTR),从而改善了成像效果。尽管GPIAM编码使用四个输入脉冲会降低帧率,但结果表明微泡响应可以进行相位编码并随后使用非线性匹配滤波算法进行压缩,以增强造影剂的信号,同时保持分辨率并抑制组织信号5。实现超分辨率成像将微泡与高速超声成像系统结合,可以突破超声波的“瑞利极限”,实现对直径小于10微米的***的成像。而常规超声成像受超声波长的影响,分辨率只能达到300微米。在微泡表面结合特异性配体,所得靶向微泡可随血液循环选择性地抵达病变区,使超声诊断的敏感度和特异度进一步提高,对疾病的早期检测和靶向***具有重要意义。因为纳米微泡的尺寸小于1μm;因此,它们可以通过EPR效应渗透到血管壁并积聚在斑块内。
超声造影剂通常是壳体包封、气体填充的微泡,直径约为1-10微米,壳通常由脂质、蛋白质或聚合物组成。当注入血液时,这些微泡的高可压缩性相对于周围的血液和组织,以及它们对超声波的高度非线性反应,导致所得到的超声图像中的血液组织对比度强烈增强1214。二、产生谐波调制增强信号在超声调制光学成像技术的基础上,结合高灵敏度的激光回馈技术提出了超声调制激光回馈技术。在透明溶液中,超声微泡造影剂可以增强超声调制激光回馈信号,并产生谐波调制,通过检测回馈基波和谐波信号增强量的方法可提高成像对比度5。三、利用非线性脉冲压缩算法提高对比度一种使用Golay相位编码、脉冲反转和幅度调制(GPIAM)的技术用于微泡造影剂成像。该技术通过增加入射波形的时间带宽积来提高对比组织比(CTR),使用非线性脉冲压缩算法在接收时压缩信号能量。与传统的脉冲反转幅度调制序列相比,使用8芯片GPIAM序列观察到CTR提高了6.5dB。但GPIAM编码使用四个输入脉冲,会导致帧率降低。该技术通过对微泡响应进行相位编码并随后使用非线性匹配滤波算法进行压缩,以增强造影剂的信号,同时保持分辨率并抑制组织信号。除了靶向成像,超声微泡造影剂还可用于提供有效载荷。肝脏靶向超声微泡价格
基于EPR的纳米颗粒靶向策略主要致力于调整药物或载体的大小和/或利用配体连接涉及EPR效应的分子。北京肺靶向超声微泡
对次谐发射的影响次谐信号从膨胀的脂质壳微泡反向散射,能改善对比增强的超声成像的检测和灵敏度。微泡填充气体对次谐发射有重要影响,不同的填充气体如硫磺酰氟(SF?)、八氟丙烷(C?F?)、十氟丁烷(C?F?0)、氮(N?)/C?F?0或空气等,会使磷脂壳微泡的次谐发射呈现出不同的特征236。例如,填充有C?F?0的微泡会记录到具有20-40分钟延迟发射和增加12-18dB次谐发射强度的可测量变化。C?F?0随空气的替代会消除次谐排放中的早期观察到的延迟;SF?取代C?F?0会成功引发所得药物的次谐发射的延迟,而C?F?0取代SF?会消除早期观察到的次谐发射的抑制236。这表明微泡剂中所含的填充气体以时间依赖的方式影响次谐波排放。综上所述,在超声微泡造影剂中加入气体对于增强超声成像效果、在***应用中发挥作用以及影响次谐发射等方面都具有重要意义。北京肺靶向超声微泡