脂质体的靶向释放载药脂质体在体内的行为主要受囊泡的吸收、分布和消除等各种药动学参数的影响。肝脏、脾脏和骨髓中的固定组织巨噬细胞是脂质体在静脉给药后可能进入的主要部位。大脂质体(>0.5μm直径)被固定组织巨噬细胞和血液单核细胞吞噬。对于小脂质体(<0.1μm),吞噬细胞的吞噬和肝实质细胞的摄取途径参与了这些脂质体从血液中的消除。通过静脉给药进行的脂质体药代动力学研究显示,它们主要通过肝脏和脾脏从血液中快速***。脂质组成在组织/生物分布和血液***中也起作用。脂质体的命运由表面电荷、表面特定配体的存在、蛋白质的结合特性和脂质体膜对被包裹标记物的通透性决定。中性带电荷的脂质体表面的蛋白质调理作用**小,因为它们的膜包裹紧密且坚硬,有利于药物的保留。脂质体能够实现药物的缓释。浙江定做脂质体载药
选择合适赋形剂改善口服生物利用度为了开发脂质体制剂以改善1-谷胱甘肽(GSH)的口服生物利用度,使用颗粒法制备了载有GSH的脂质体。选择甘露醇作为有效赋形剂,以达到所需的粒径、包封率和**终制剂口服给药的溶解度。在大鼠中进行的口服生物利用度研究表明,阳性脂质体制剂的生物利用度分别比阴性脂质体、市售胶囊制剂和纯GSH高1418。合适的赋形剂能够改善脂质体的物理性质,提高药物的稳定性和溶解度,从而增强口服生物利用度。四、纳米技术增强药物稳定性和生物利用度开发载有拉洛昔芬(RLX)的脂质体-石墨烯纳米片,通过优化配方设计,提高了RLX的溶解和生物利用度。优化后的制剂在24小时内表现出延长的释放,可降低药物的剂量相关毒性,并在体外对A549细胞系表现出***的细胞毒性,在肺****中具有潜在应用价值15。纳米技术的应用可以改善药物的稳定性和靶向性,提高生物利用度。合肥脂质体载药脂质脂质体作为一种药物传递系统,具有独特的载药原理。
4PEG2000在脂质体中的作用
PEG2000是一种聚乙二醇(PEG)衍生物,常用于脂质体的表面修饰。它在脂质体中具有多种作用:1.稳定性增强:PEG2000可以在脂质体表面形成一层稳定的水合层,防止脂质体的聚集和沉淀,从而提高其在溶液中的稳定性。2.血液循环延长:脂质体表面修饰PEG2000可以降低脂质体被吞噬的速度,延长其在血液循环中的半衰期,从而增加药物的生物利用度。3.免疫原性降低:PEG2000可以掩盖脂质体表面的亲水性基团,减少脂质体与免疫系统的识别和***,降低免疫原性,提高脂质体的生物相容性。4.药物释放调控:PEG2000修饰的脂质体可以通过改变PEG链的长度和密度来调控药物的释放速率和方式,实现对药物的精确控制释放。在Doxil和Onivyde中,甲氧基peg(Mw2000Da)与DSPE(MPEG-DSPE)共价结合,提供了“隐形”和空间稳定的脂质体。PEG的分?量和PEG-DSPE在脂质组成中的摩尔百分?对双层填料、循环时间和热?学稳定性有重要影响。?分?量的PEG(>2000Da)移植到脂质头群上,表现出来?脂质体表?的排斥?,并?;ぶ侍宀挥?清蛋?结合,避免被单核吞噬系统(MPS)进?步***,但也减少了靶细胞对脂质体的相互作?和内吞作?。
脂质体制备方法:破碎技术尺?和尺?分布是脂质体性能和安全性的关键属性。有?种?法可?于减少脂质体的尺?,如(超)超声(通过浴或探针),挤压,均质,或组合?法,如冻融挤压,冻融超声和?压均质挤压技术。在这些技术中,挤压和?压均质(HPH)是在制药制造中**常?的技术。?尺?的脂质体通过聚碳酸酯膜(50nm~5μm)成为粒径分布精细的较?的脂质体。众所周知,商业化的纳?脂质体产品,包括Onivyde、Vyxeos、Marqibo等,都是采?这种?法进??产的。该?法相对简单,重现性好,只需要适中的条件。尺?减?的潜在机制是MLV在膜孔??处破裂,并在膜通过过程中重新排列。关键的?艺参数,如聚碳酸酯膜的孔径、通过循环次数、压?和流速等,都可以影响脂质体的??和?层性。Ong等?发现,在?较其他不同的纳?化技术(包括冻融超声、超声和均质化)时,挤出是***的技术。然?,挤压可能会降低脂质体的包封性并改变不对称脂质体的结构。HPH?于?产各种纳?制剂,如脂质体、纳?晶体和纳?乳液。它既适?于?体系,也适?于??体系,并提供不同的?产规模,从容量为10L/h的实验室规模到容量为10万L/h的?型?产规模。脂质体在体内的分布具有一定的选择性。
利用微流体装置,通过精确控制流体的流动和混合,实现脂质体的制备。例如,基于液滴射击和尺寸过滤(DSSF)的3D打印微毛细管微流体装置,可以同时形成和封装脂质体及各种细胞模拟腔化学物质。优势:这种方法可以精确控制脂质体的尺寸和组成,制备出高度均匀的脂质体。在“LiposomePreparationby3D-PrintedMicrocapillary-BasedApparatus”中详细介绍了这种方法的应用。通过Box-Behnkendesign等响应面优化方法,以包封率等为评价指标,优化脂质体的制备工艺参数。示例:在“菊苣酸脂质体制备工艺研究”中,采用薄膜分散-超声法制备菊苣酸脂质体,以包封率为评价指标,采用Box-Behnkendesign响应面优化法优化制备工艺参数。结果显示比较好制备工艺为磷脂与胆固醇的质量比为4.20:1,磷脂与药物的质量比为11.44:1,超声时间为6.54min6。采用薄膜水化法制备益生菌脂质体(Pro-lips),以益生菌的包封率为评价指标,通过单因素试验,优化Pro-lips的制备工艺。结果:Pro-lips的比较好原料配比为益生菌、大豆卵磷脂、胆固醇的质量比为1:12:2,药物浓度1.5mg/mL;比较好制备工艺为45℃成膜,200w超声15min,60℃水合2h。所得Pro-lips呈淡黄色乳光,粒子呈类球形,分布均匀无黏连。修饰脂质体实现靶向给药利用超重力设备技术实现脂质体连续化生产。甘肃靶向脂质体载药
脂质体的稳定性是实现靶向给药的重要基础。浙江定做脂质体载药
脂质体中辅助脂质中性脂也经常被用作阳离子脂质体的助手。例如,已知中性脂质1,2-二油基-asn-甘油-3-磷酸乙醇胺(DOPE)在胞吞作用后参与内体逃逸,胆固醇(一种内源性脂质)可以插入脂质双层之间以增加纳米颗粒的刚性。为了增加体内稳定性,一种非常普遍的方法包括插入聚乙二醇(PEG)偶联的中性脂质,对纳米颗粒进行聚乙二醇化。此外,中性辅助性脂质,如DOPE已被用于提高阳离子脂质体的递送效率。DOPE提高核酸递送效率的生物物理机制仍在研究中。**近的一项研究报道,含有DOPE的脂质单层呈现不规则的豆状结构域,而缺乏DOPE的脂质单层呈现均匀的表面。除DOPE外,其他中性脂质,包括N-十二烷?;“彼?,已被报道可提高阳离子脂质体的基因递送效率。浙江定做脂质体载药