在各种类型的脂质体中,免疫脂质体因其靶向能力而受到***关注。 由于存在附着在其表面的抗体,这些脂质体表现出免疫应答。免疫脂质体的制备, 即抗体与脂质体的偶联,并不是那么简单, 甚至在其配方过程中可能会带来挑战。 蛋白质分子和单克隆抗体可以直接偶联到脂质体、聚乙二醇化脂质体或聚乙二醇化脂质体的聚乙二醇链上。与其他脂质体类似,RES可以***和***体循环中的免疫脂质体快速***。 因此,为了防止摄取和增加循环半衰期, 脂质体被聚乙二醇化(涂有聚乙二醇)。 类似地, 抗体结合到聚乙二醇化脂质体上也有报道。然而, 这种递送系统的缺点是很难将抗体偶联到聚乙二醇化脂质体上, 因为高分子量的聚乙二醇链会对抗体结合到脂质体上造成空间位阻。此外, 结合抗体的靶向能力也因聚乙二醇的存在而降低。 为了克服这些问题, 并利用抗体偶联到 聚乙二醇化脂质体的聚乙二醇链上, 以达到期望的靶向目的。含有DOTAP、胆固醇和DSPC-PEG2000的阳离子脂质体可以递送microRNA 。吉林脂质体载药核酸
microRNA脂质体
microRNA是真核细胞中发现的短(约22mer)非编码RNA,通过结合互补的mRNA序列发挥生物调节剂的作用。miRNA以初级miRNA的形式从其编码的核基因转录,其长度为数百个核苷酸。RNaseIII酶,Drosha,将初级miRNA加工成pre-miRNA(长度为70个核苷酸),携带一个特征的发夹环。然后pre-miRNA移动到细胞质中,在那里RNaseIII酶Dicer产生成熟的miRNA和乘客链。***,成熟的miRNA被整合到RNAi诱导的沉默复合体中,以降解它们的靶mRNA。由DOTMA、胆固醇和vitaminETPGS1k琥珀酸盐组成的阳离子脂质体被证明可以有效递送pre-miRNA-133b,导致A549非小肺*细胞中成熟miRNA-133b的表达比对照组细胞增加2.3倍,Mcl-1蛋白的表达减少1.8倍。经尾静脉注射含有pre-miRNA-133b的阳离子脂质体(1.5mg/kg)的ICR小鼠肺组织中成熟miRNA-133b的表达比接受含有紊乱的pre-mirna的阳离子脂质体的小鼠高52倍。 安徽红色荧光脂质体载药脂质体配方中各脂类的毒性的研究。
脂质体被动载药?法
被动载药?法是在脂质体制备过程中对药物进?包封的方法。药物可以通过药物分?与脂质之间的共价、离?、静电、?共价或位阻相互作?被包封在内?空间内或包埋在脂质体的双层中。这种?法的主要缺点是包封效率低,从?导致额外的游离药物去除步骤。通过对**和出版物的了解,已上市的采?被动载药?法的脂质体产品包括AmBisome、Visudyne、Arikayce、DepoCyte、DepoDur和Expel。被动载药?法可?于亲脂***物物质。例如椎体卟啉,?称苯并卟啉衍?物单酸环A(BPD)(Vi-sudyne),是?种?亲脂性分?,能有效促进药物参与到脂质双分?层中。匀浆后,BPD在脂质体中的包封效率?乎为100%。AmpB(AmBisome)由于其两亲性结构,在?和?多数有机溶剂中难溶。AmpB可以通过带正电的AmpB氨基与带负电的DSPG磷酸基之间的离?结合紧密嵌?脂质双分?层。在pH1.0-3.0的酸性环境中,离?相互作?很容易形成。此外,AmpB的多烯部分与磷脂的脂肪烃链之间的疏?相互作?进?步加强了这种联系。被动载药法也可以用于亲?***物物质。硫酸阿?卡星是?种?由?溶性抗***药物。
脂质体核酸疫苗核酸***剂是一类新兴的药物,显示出***各种疾病的潜力。然而,由于核酸是多价阴离子和高度亲水分子,它们几乎不被细胞吸收。它们也很容易被血液中的核酸酶降解。因此,它们需要一种传递载体才能进入细胞并发挥作用。LNP载体是核酸类药物的成功载体之一。核酸药物Patisiran(ONPATTRO)是一种在LNPs中配方的siRNA,用于减少肝脏中甲状腺素转运蛋白的形成,**近获得FDA批准用于***遗传性甲状腺素转运介导的淀粉样变性。它是**早获批的siRNA药物,也是**早的lnp配方核酸药物,标志着核酸***学发展的一个重要里程碑。COVID-19mRNA疫苗中的LNPs。LNPs的***成功应用是辉瑞/BioNTech和莫当纳**近批准的两种COVID-19信使RNA(mRNA)疫苗的递送载体,这两种疫苗的开发速度****,在疾病预防方面显示出显着的效果。疫苗将编码SARS-CoV-2刺突蛋白的mRNA送入宿主细胞细胞质;mRNA被翻译成刺突蛋白,刺突蛋白作为抗原,导致对病毒产生免疫反应。两种mRNA疫苗的脂质纳米颗粒的组成非常相似。一种含有DOPE的脂质制剂被发现可以增加各种细胞类型中GFP特异性siRNA的摄取。
脂质体各组分对核酸递送效率的影响对于使用阳离子脂质体开发核酸***剂,一个先决条件是必须将核酸适当地递送到靶细胞并到达适当的亚细胞区室(例如,细胞质或细胞核)。已知阳离子脂质体的递送效率会受到阳离子脂质和辅助脂质类型及其组成的影响。阳离子脂质是纳米粒子的**成分,具有一个带正电的头基和一个或两个由碳氢链或类固醇结构组成的疏水尾区的共同结构。Felgner和同事报道了N-[1-(2,3-二聚氧基)丙基]-N,N,N-三甲基氯化铵(DOTAP)的合成,其具有一个单价阳离子头和两个碳氢化合物尾部,并用于制备小的单层脂质体。他们将DNA包裹的脂质体转染到小鼠L细胞中,并证明阳离子脂质中和了带负电荷的DNA,使阳离子脂质体有更好的机会与带负电荷的细胞膜相互作用。从那时起,各种阳离子脂质和基于脂质的纳米颗粒被设计和评估用于核酸的细胞递送,包括DNA,siRNA,miRNA和AS-ODN。这些新的阳离子脂质已经通过文库技术和基于理性的预测相结合的方法被鉴定出来。对类脂类材料文库的筛选产生了由十个碳和两个烷基链组成的阳离子脂质,发现其比其他候选物更有效。
相变温度对脂质体的影响。江苏脂质体载药靶向肽
由于AS-ODNs可以下调某些RNA并抑制靶蛋白的表达,因此它们被认为具有作为核酸药物的潜力。吉林脂质体载药核酸
2脂质体的主要成分
?油磷脂(GP)、鞘磷脂(SM)和胆固醇(Chol)是市场上脂质体产品中使?的基本成分。GP含有?油,它连接?对疏?脂肪酸链和?个亲?极性头基。脂肪酸和极性头基团的类型。在?理pH下,不同的头部组提供负(PA、PS、PG和?磷脂)或中性(PC和PE)电荷的脂质体。带负电的DSPG?于AmBisome(注射?两性体脂质体),可与带正电的AmpB胺基相互作?,形成稳定的离?配合物,??于Vyxeos的DSPG通过强?的库仑斥?使脂质体聚集**?。?于DaunoXome(柠檬酸柔红霉素脂质体注射液)、Onivyde(伊?替康脂质体注射液)和Vyxeos的DSPC是?种中性合成脂质,具有明确的脂肪酸组成(两分?硬脂酸)、?纯度和相对?的相转变(Tm为55?C)。EPC作为赋形剂加?Myocet和Visudyne(维替泊芬粉为输液溶液)中。EPC是从蛋?中纯化的天然磷脂(NPL)。与半合成脂和合成脂相?,NPL的?产成本较低,但转变温度较宽,难以获得完全相同的NPL,并且脂质体可能存在批次差异。此外,EPC的不饱和脂肪酸导致了?15~?5?C的低相变温度,表明脂质体双分?层在体温中处于?序和药物“漏出”状态。 吉林脂质体载药核酸