肖特基二极管是一种特殊类型的二极管,其好的特点是由金属与半导体直接接触形成的非对称结构,因此其正向电压低于常规PN结二极管。这种特殊结构使得肖特基二极管具有快速开关速度和较低的逆向恢复时间,也使其在高频和功率电路中具有广泛应用。肖特基二极管的是肖特基结,这是由金属与半导体材料直接接触而形成的势垒结构。这种结构导致了一些独特的电学特性,如快速的载流子注入和较小的少子内建电场,这样就降低了开关时的载流子注入和少子收集时间,从而实现了快速的开关速度和低逆向电流。常州市国润电子有限公司力于提供肖特基二极管 ,欢迎您的来电!重庆TO247封装的肖特基二极管
肖特基二极管的作用及其接法-变容变容肖特基二极管(VaractorDiodes)又称"可变电抗二极管",是利用pN结反偏时结电容大小随外加电压而变化的特性制成的。反偏电压增大时结电容减小、反之结电容增大,变容肖特基二极管的电容量一般较小,其值为几十皮法到几百皮法,区容与电容之比约为5:1。它主要在高频电路中用作自动调谐、调频、调相等、例如在电视接收机的调谐回路中作可变电容。当外加顺向偏压时,有大量电流产生,PN(正负极)结的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。肖特基二极管应用SBD的结构及特点使其适合于在低压、大电流输出场合用作高频整流,在非常高的频率下(如X波段、C波段、S波段和Ku波段)用于检波和混频,在高速逻辑电路中用作箝位。在IC中也常使用SBD,像SBD?TTL集成电路早已成为TTL电路的主流,在高速计算机中被采用。除了普通PN结二极管的特性参数之外,用于检波和混频的SBD电气参数还包括中频阻抗(指SBD施加额定本振功率时对指定中频所呈现的阻抗,一般在200Ω~600Ω之间)、电压驻波比(一般≤2)和噪声系数等。浙江肖特基二极管MBR10150CT肖特基二极管 ,就选常州市国润电子有限公司,有想法的可以来电咨询!
肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。特点为反向恢复时间极短(可以小到几纳秒),正向导通压降可以低至。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等肖特基(Schottky)二极管又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。在通讯电源、变频器等中比较常见。供参考。电路中作整流二极管、小信号检波二极管使用。在通讯电源、变频器等中比较常见。肖特基(Schottky)二极管的特点是正向压降VF比较小。在同样电流的情况下,它的正向压降要小许多。另外它的恢复时间短。它也有一些缺点:耐压比较低,漏电流稍大些。选用时要细致考虑。
一是来自肖特基势垒的注入;二是耗尽层产生电流和扩散电流。[2]二次击穿产生二次击穿的原因主要是半导体材料的晶格缺陷和管内结面不均匀等引起的。二次击穿的产生过程是:半导体结面上一些薄弱点电流密度的增加,导致这些薄弱点上的温度增加引起这些薄弱点上的电流密度越来越大,温度也越来越高,如此恶性循环引起过热点半导体材料的晶体熔化。此时在两电极之间形成较低阻的电流通道,电流密度骤增,导致肖特基二极管还未达到击穿电压值就已经损坏。因此二次击穿是不可逆的,是破坏性的。流经二极管的平均电流并未达到二次击穿的击穿电压值,但是功率二极管还是会产生二次击穿。[2]参考资料1.孙子茭.4H_SiC肖特基二极管的研究:电子科技大学,20132.苗志坤.4H_SiC结势垒肖特基二极管静态特性研究:哈尔滨工程大学,2013词条标签:科学百科数理科学分类。常州市国润电子有限公司为您提供肖特基二极管 ,期待为您服务!
肖特基二极管的基本结构是重掺杂的N型4H-SiC片、4H-SiC外延层、肖基触层和欧姆接触层。由于电子迁移率比空穴高,采用N型Si、SiC或GaAs为材料,以获得良好的频率特性,肖特基接触金属一般选用金、钼、镍、铝等。金属-半导体器件和PiN结二极管类似,由于两者费米能级不同,金属与半导体材料交界处要形成空间电荷区和自建电场。在外加电压为零时,载流子的扩散运动与反向的漂移运动达到动态平衡,这时金属与N型4H-SiC半导体交界处形成一个接触势垒,这就是肖特基势垒。肖特基二极管就是依据此原理制作而成。[2]碳化硅肖特基二极管肖特基接触金属与半导体的功函数不同,电荷越过金属/半导体界面迁移,产生界面电场,半导体表面的能带发生弯曲,从而形成肖特基势垒,这就是肖特基接触。金属与半导体接触形成的整流特性有两种形式,一种是金属与N型半导体接触,且N型半导体的功函数小于金属的功函数;另一种是金属与P型半导体接触,且P型半导体的功函数大于金属的功函数。金属与N型4H-SiC半导体体内含有大量的导电载流子。金属与4H-SiC半导体材料的接触有原子大小的数量级间距时,4H-SiC半导体的费米能级大于金属的费米能级。常州市国润电子有限公司为您提供肖特基二极管 ,期待您的光临!重庆肖特基二极管MBR30150CT
常州市国润电子有限公司是一家专业提供肖特基二极管 的公司,有想法的可以来电咨询!重庆TO247封装的肖特基二极管
第2种输运方式又分成两个状况,随着4H-SiC半导体掺杂浓度的增加,耗尽层逐渐变薄,肖特基势垒也逐渐降低,4H-SiC半导体导带中的载流子由隧穿效应进入到金属的几率变大。一种是4H-SiC半导体的掺杂浓度非常大时,肖特基势垒变得很低,N型4H-SiC半导体的载流子能量和半导体费米能级相近时的载流子以隧道越过势垒区,称为场发射。另一种是载流子在4H-SiC半导体导带的底部隧道穿过势垒区较难,而且也不用穿过势垒,载流子获得较大的能量时,载流子碰见一个相对较薄且能量较小的势垒时,载流子的隧道越过势垒的几率快速增加,这称为热电子场发射。[2]反向截止特性肖特基二极管的反向阻断特性较差,是受肖特基势垒变低的影响。为了获得高击穿电压,漂移区的掺杂浓度很低,因此势垒形成并不求助于减小PN结之间的间距。调整肖特基间距获得与PiN击穿电压接近的JBS,但是JBS的高温漏电流大于PiN,这是来源于肖特基区。JBS反向偏置时,PN结形成的耗尽区将会向沟道区扩散和交叠,从而在沟道区形成一个势垒,使耗尽层随着反向偏压的增加向衬底扩展。这个耗尽层将肖特基界面屏蔽于高场之外,避免了肖特基势垒降低效应,使反向漏电流密度大幅度减小。此时JBS重庆TO247封装的肖特基二极管