高速信号传输
串扰分析
由于频率的提高,传输线之间的串扰明显增大,对信号完整性也有很大的影响,可以通过仿真来预测、模拟,并采取措施加以改善。以CMOS信号为例建立仿真模型,如图6所示。在仿真时设置干扰信号的频率为66MHz的方波,扰者设置为零电平输入,通过调整两根线的间距和两线之间平行走线的长度来观察扰者接收端的波形。仿真结果如图7,分别为间距是203.2mm、406。4mm时的波形。
从仿真结果看出,两线间距为406.4mm时,串扰电平为200mV左右,203.2mm时为500mV左右。可见两线之间的间距越小串扰越大,所以在实际高速PCB布线时应尽量拉大传输线间距或在两线之间加地线来隔离。 高速信号传输——信号完整性信号的回路 特征阻抗与反射;上海高速信号传输PCI-E测试
克劳德高速数字信号测试实验室
高速信号传输技术的内涵高速电信号传输设计与分析是电子设计工程师必须掌握的基本技能。电子产品处理器主频高至GHz、传输速率达到Gbps以上,高速信号的处理和传输要求电子设计工程师必须至少具备以下三项技能:
●高速逻辑时序设计;
●高速电路散热设计;
●高速信号传输设计。
①逻辑时序设计对于数字电路设计工程师而言,无论其开发的数字电路是所谓的低速数字电路,还是高速数字电路,都是基本的设计。电子工程师在进行时序设计时,有一个很重要的假设:数字逻辑信号传输没有失真。因此,逻辑时序设计更多的是考虑信号的逻辑运算、信号延时、信号的同步等因素。 上海高速信号传输PCI-E测试高速信号传输用串行还是并行;
高速信号传输
《高速信号传输》是高速信号传输应用领域享誉国际的经典教材与工具书。高速数字设计重在研究基本的电路结构,而高速信号传输则重在研究传输线如何达到其速度和距离的极限问题。内容涉及不同传输线参数的基本理论,包括趋肤效应、邻近效应、介质损耗和表面粗糙度,以及适用于所有导体媒质的通用频域响应模型;由频域传递函数计算时域波形;特殊传输媒质,包括单端PCB引线、差分媒质、通用建筑布线标准、非屏蔽双绞线对、150欧姆屏蔽双绞线对、同轴电缆及光纤;时钟分布的各种问题;采用Spice模型和IBIS模型进行仿真的限制。
克劳德高速数字信号测试实验室
②数字电路散热设计是数字电路设计工程师必备的第二项基本技能。一方面,数字集成电路的发展趋势是芯片的高集成度和小体积;另一方面,数字信号处理能力和速度在不断提升,必然带来数字电路功耗和热耗的增大。以上两方面的原因共同导致电路单位面积的热流密度增加。当热流密度增加到一定程度时,自然散热方式已经不能满足电路的散热需要,必须考虑并采取合适的散热措施,才能确保其在一定环境温度下正常工作。 高速信号传输工程化技术问题;
2.1.2数字信号的时域特性高速信号传输的主要研究内容是高速数字信号传输,因此,我们先以时钟信号为例,讨论数字信号在时域和频域中的特征。在时域中,时钟信号有两个重要的参数,即时钟周期和上升时间。图2.1说明了数字时钟信号的这两个特性。时钟信号波形
时钟周期就是时钟信号重复一次的时间间隔,在高速信号系统中,时钟信号的周期(Tclock)单位一般为纳秒(ns),频率为在1秒钟内时钟循环的次数,单位一般为赫兹(Hz),时钟频率与时钟周期是互为倒数的关系: 高速信号的界定标准;上海高速信号传输PCI-E测试
高速信号传输研究的主要目的是解决信号保形传输问题;上海高速信号传输PCI-E测试
第五,在电子产品调试过程中,如果出现高速信号传输失败的问题,如DVI信号传输时数据接收不稳定,如何对出现的问题给出解决思路,对哪些信号进行测试,如何对测试的结果进行分析,并给出解决方案并终消除问题,即被称为高速信号传输问题分析的工程化技术。高速信号传输工程化技术就是对高速信号传输给出具有适度性能、适度成本、适度可靠性和适度制造性等综合良好性能的技术解决方案。所谓适度就是指性能指标满足用户要求,并达到相关国际标准、国家标准和行业标准。上海高速信号传输PCI-E测试