用于放大所述级间匹配电路输出的信号;所述输出匹配电路,用于使所述射频功率放大器电路和后级电路之间阻抗匹配。本申请实施例中,通过射频功率放大器电路中的可控衰减电路、反馈电路、驱动放大电路、功率放大电路等电路对输入信号进行处理,实现射频功率放大器电路的负增益模式与非负增益模式之间的切换,电路结构简单,能有效的降低硬件成本。附图说明图1a为本发明实施例提供的相关技术中射频功率放大器电路的组成结构示意图;图1b为本发明实施例提供的相关技术中射频功率放大器电路的电路结构示意图;图2a为本发明实施例提供的射频功率放大器电路的组成结构示意图;图2b为本发明实施例提供的射频功率放大器电路的电路结构示意图图3为本发明实施例提供的可控衰减电路的示意图;图4为本发明实施例提供的可控衰减电路的示意图;图5a为本发明实施例提供的可控衰减电路和输入匹配电路的示意图;图5b为本发明实施例提供的可控衰减电路和输入匹配电路的示意图;图6为本发明实施例提供的反馈电路的示意图;图7为本发明实施例提供的偏置电路的示意图;图8为本发明实施例提供的可控衰减电路的等效示意图;图9为本发明实施例提供的可控衰减电路的的示意图。随着无线通信/雷达通信系统的发展对固态功率放大器提出了新 的要求:大功率输出、高效率、高线性度、高频率.安徽V段射频功率放大器价格多少
微控制器控制第五一开关导通、第五二开关关断,此时可实现低增益;微控制器控制第五一开关和第五二开关均导通,此时反馈电路的等效电阻小,可实现负增益。在一些实施例中,当射频放大器电路的高增益为30db左右,低增益为15db左右,负增益为-10db左右时,可设置第五三电阻的阻值为5kω,第五一电阻的电阻为1kω,第五二电阻的电阻为100ω。需要说明的是,本实施例对反馈电路的具体形式不做限定。可见,通过控制反馈电路中第二开关的通断,可以改变射频功率放大器电路的增益大小,实现增益的大范围调节。在一个可能的示例中,级间匹配电路104包括:第三电感l3、第七电容c7和第八电容c8,其中:第三电感的端连接第三mos管的漏级,第三电感的第二端连接第二电压信号和第七电容的一端,第七电容的端连接第二电压信号,第七电容的第二端接地,第八电容的端连接第三mos管的漏级。其中,第二电压信号为vcc。在本申请实施例中,考虑到级间匹配电路的复杂性,将级间匹配电路简化为用第三电感、第七电容和第八电容表示。在一个可能的示例率放大电路105包括:第四mos管t4、第五mos管t5和第九电容c9,其中:第四mos管的栅级与第八电容的第二端连接。云南使用射频功率放大器值得推荐射频功率放大器的主要技术指标是输出功率与效率,提高输出功率和效率,是射频功率放大器设计目标的中心。
执行移动终端的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器408可包括一个或多个处理;推荐的,处理器408可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器408中。移动终端还包括给各个部件供电的电源409(比如电池),推荐的,电源可以通过电源管理系统与处理器408逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。电源409还可以包括一个或一个以上的直流或交流电源、再充电系统、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。尽管未示出,移动终端还可以包括摄像头、蓝牙模块等,在此不再赘述。具体在本实施例中,移动终端中的处理器408会按照如下的指令,将一个或一个以上的应用程序的进程对应的可执行文件加载到存储器402中,并由处理器408来运行存储在存储器402中的应用程序,从而实现各种功能:预设射频功率放大器的配置状态电阻值;计算所述射频功率放大器检测模块的电阻值;比较所述射频功率放大器检测模块的电阻值与所述配置状态电阻值。
射频功率放大器电路,用于根据微控制器的控制,对射频收发器的输出信号进行放大或衰减;天线,用于发射射频功率放大器电路的输出信号。由于终端(如水电表)分布范围广,每个终端距离基站的距离各不相同,距离基站远的终端,其信道衰减量大,因此需要射频功率放大器电路的输出功率大;而距离基站近的终端,其信道衰减量小,因此需要射频功率放大器电路的输出功率小。微控制器通过控制射频功率放大器电路的输入功率和增益,从而控制其输出功率,使其输出功率满足要求。例如,基站使用预先确定的通信资源发送同步信号(synchronizationchannel,sch)和广播信号(broadcastchannel,bch)。然后,终端首先捕捉sch,从而确保与基站之间的同步。然后,终端通过读取bch而获取基站特定的参数(如频率、带宽等)。终端在获取到基站特定的参数之后,通过对基站进行连接请求,建立与基站的通信。基站根据需要对建立了通信的终端通过物理下行控制信道(physicaldownlinkcontrolchannel,pdcch)等控制信道发送控制信息。终端中的微控制器通过通信模组接收到控制信息后,控制输出功率,使其满足要求。基站在与终端的通信过程中,根据路径损耗(pathloss,pl)确定链路预算(linkbudget,lb)。AM失真,它与晶体管是否工作于饱和区密切相关。
图3中的自适应动态偏置电路的电路结构如图2所示。射频输入端rfin和射频输出端rfout之间设置有两个主体电路,每个主体电路包括激励放大器和功率放大器,激励放大器和功率放大器通过匹配网络连接。主体电路中的c04和c05构成激励放大器和功率放大器之间的匹配网络;第二主体电路中的c11和c12构成激励放大器和功率放大器之间的匹配网络。主体电路中的激励放大器与变压器t01的副边连接,第二主体电路中的激励放大器与第二变压器t03的副边连接。变压器t01的原边和第二变压器t03的原边连接,变压器t01的原边与第二变压器t02的原边之间还连接有电容c01。变压器t01、第二变压器t02和电容c01构成一个匹配网络。变压器t01的副边连接有电容c02,第二变压器t03的副边连接有电容c09。变压器t01的原边连接射频输入端rfin,第二变压器t03的原边接地。变压器t01原边与第二变压器t03原边的公共端连接自适应动态偏置电路的输入端rfin_h。主体电路中的功率放大器与第三变压器t02的原边连接,第二主体电路中的功率放大器与第四变压器t04的原边连接。第三变压器t02的副边与第四变压器t04的副边连接,第三变压器t02副边和第四变压器t04副边之间还连接有电容c16。微波固态功率放大器的电路设计应尽可能合理简化。陕西V段射频功率放大器要多少钱
效率:功率放大器的效率除了取决于晶体管的工作状态、电路结构、负载 等因素外,还与输出匹配电路密切相关。安徽V段射频功率放大器价格多少
AB类放大器可以确保其谐波/失真性能足够满足EMC领域的需求,也就是它的线性度能满足商业电磁兼容测试标准IEC61000-4-3和IEC61000-4-6的需求。AB类放大器为了线性度与B类放大器相比了一点效率,但相比A类放大器则具有高效率(理论上可达60%到65%)。AB类放大器的优点:与A类放大器相比,功率效率提高。AB类放大器的设计可以使用比A类更少的器件,对于相同的功率等级和频率范围,体积更小,价格更便宜。使用风冷,比A类放大器的冷却器要轻。AB类放大器的缺点:产生的谐波需要注意具体产品给出的指标,尤其是二次谐波,AB类放大器可以通过仔细调整偏置的设置和采用推挽拓补结构将谐波明显抑制。C类放大器C类放大器的晶体管偏置设置使得器件在小于输入信号的半个周期内导通,在没有输入信号时不消耗电源电流,因此效率很高,可高达90%左右。C类放大器在通常的商业EMC测试中很少使用,因为它们不能对连续波进行放大。它们在窄带、脉冲应用中得到了应用,比如汽车电子ISO11452-2中的雷达波测试,DO-160以及MIL-464中的HIRF高脉冲场强测试等。C类放大器的工作原理图如图6所示。图6:C类放大器的工作原理图C类放大器相当于工作在饱和状态而不是线性区,也就是输入如果是正弦信号。安徽V段射频功率放大器价格多少