如果含氯废水在未经处理的情况下直接排入自然的水源之中,将会带来极大的危害。氯离子会严重恶化水质,对渔业生产和水产养殖造成严重影响,导致减产甚至绝收。同时,氯离子还具有很强的腐蚀性,会对钢铁等金属管道造成腐蚀,使管道的耐久性降低,明显缩短其使用寿命。例如,一些工业区域的排水管道,由于长期接触含氯废水,管壁逐渐变薄,甚至出现漏洞,后期的维修成本极其高昂。所以,含氯废水必须经过严格处理,达标后才能排放。
电解除氯副产物多,需控制电流密度。青海吸收塔除氯设施
氯碱电解槽产生的尾气含Cl? 3-8%,传统采用两级碱洗(NaOH 15%):首级吸收率>99%,生成NaClO(pH>12),次级补充Na?SO?还原残余Cl?。某企业改造为"碱洗-催化氧化"工艺,在CuO/γ-Al?O?催化剂(200℃)下将Cl?转化为HCl回收,氯排放从50mg/m3降至1mg/m3以下。关键控制点是避免尾气中H?浓度达易爆极限(4-75%),需安装在线红外分析仪。新型离子液体吸收剂(如[BMIM]PF?)对Cl?的亨利系数低至0.12kPa·m3/mol,吸收容量达传统碱液的3倍。内蒙古吸收塔除氯除硬高氯废水处理成本增加30%以上。
植物学实验室的检测结果表明,直接用自来水浇花,水中的氯残留量可高达 0.3mg/L,这一数值是植物耐受极限的 6 倍之多。氯气对植物的危害不容小觑,它会损害植物的根系,导致根系活力大幅下降。例如,用含有 0.3mg/L 氯的水浇灌植物 7 天,根系活力就会下降 53%。此外,自来水通常呈碱性,这会引发土壤板结,碳酸钙在土壤中沉积,使土壤的透气性变差;碱性环境还会固化铁元素,导致植物叶片黄化;而且,自来水中的盐分长期累积,甚至存在烧根的风险。所以,为了让植物茁壮成长,浇花用水必须进行除氯处理。
黄铜(如HAl77-2)在含氯环境中会发生选择性腐蚀,锌元素优先溶出,导致材料强度丧失。某电厂凝汽器铜管在Cl?=400mg/L条件下,3年内壁厚减薄达40%,被迫提前更换。这种腐蚀还会造成管壁粗糙度增加,使换热效率下降25%以上,直接影响机组经济运行。
循环水常用的有机膦酸类缓蚀剂(如HEDP)会与Cl?竞争金属表面吸附位点。实验表明,当Cl?浓度从100mg/L升至500mg/L时,HEDP的缓蚀效率从92%降至58%。某化工厂不得不将药剂投加量提高2倍(年成本增加¥180万)才能维持防护效果,且高浓度药剂又带来环保风险。 氯离子促进不锈钢应力腐蚀开裂。
晾晒法是养鱼过程中常用的除氯手段。不同的季节,晾晒所需的时间有所不同。夏天阳光充足、气温较高,氯气挥发速度快,晾晒一天基本就可以了;春秋天温度较为适中,需要晾晒两天;而冬天天气寒冷,氯气挥发极为缓慢,通常要晾晒三天以上才行。要是遇到没有太阳的天气,将自来水静置一周左右,氯气也能自然挥发一部分。在晾晒的过程中,阳光中的紫外线还能起到杀菌的作用,同时适当提升水温,使水更加适合鱼儿生存。比如,准备一个大水桶,接满自来水后放在院子里阳光充足的地方,夏天晒一天后,再用于给鱼缸换水,鱼儿会更加健康活泼。氯离子浓度>300mg/L时碳钢腐蚀加剧。山西除氯需求
除氯系统需考虑浓水处置方案。青海吸收塔除氯设施
电化学除氯效率取决于阳极氧化电位和析氯过电位。钛基涂层电极(DSA)中,IrO?-Ta?O?阳极在1.8V(vs SHE)时析氯电流效率达85%,而RuO?涂层易因Cl?氧化生成ClO??副产物。某化工厂电解处理含Cl? 3000mg/L废水,采用脉冲电源(频率100Hz,占空比1:3)比直流电节能22%,但极板间距需控制在5mm以内以防欧姆损耗。石墨烯修饰的硼掺杂金刚石(BDD)阳极可将氯代烃(如氯苯)完全矿化为CO?,矿化电流效率达91%,但成本高达¥8000/m2。青海吸收塔除氯设施