通过排放高氯循环水并补充新水的置换法,在水资源紧张地区经济性差。以10000m3/h系统为例,每降低100mg/L Cl?需排放20%水量,年耗水量增加50万吨。该方法还存在以下问题:1)无法应对突发性氯污染(如工艺介质泄漏);2)排放水可能含有其他污染物,需额外处理;3)频繁补水导致系统水质波动,影响水处理药剂效果。某电厂实践表明,采用该法后年运行成本增加120万元。
采用强碱阴树脂处理循环水时面临多重挑战:1)高硬度(Ca2?>500mg/L)会导致树脂钙污染,交换容量半年内下降40%;2)再生产生的含盐废水(NaCl 8-10%)需专门处理;3)树脂氧化破裂后释放季铵基团可能形成致病物NDMA。某化工厂运行数据显示,处理Cl?=300mg/L的循环水时,吨水处理成本达¥18-22,是其他方法的3-5倍。 氯离子腐蚀金属设备,需严格控制浓度。黑龙江除氯除硬
Cl?是嗜盐菌(如Halomonas)生长的必需元素,其存在导致:生物膜厚度增加3倍,形成缺氧腐蚀微环境垢下Cl?浓度可达本体水的20倍(局部腐蚀速率>3mm/年)常规杀菌剂穿透生物膜效率下降70%某炼油厂循环水系统在Cl?>400mg/L时,碳钢管道微生物腐蚀穿孔事故频发,年检修费用增加¥500万。
Cl?与Ca2?、Mg2?形成的沉积物具有特殊危害:导热系数0.5W/(m·K),是不锈钢的1/30多孔结构吸附腐蚀产物,形成恶性循环1mm厚氯盐垢层使换热效率降低25%某热电厂的蒸汽冷凝器因Cl?沉积,年多耗标煤8000吨,直接经济损失¥640万。 宁夏工业除氯除硬系统高氯环境必须选用特种合金材料。
化学沉淀法通过投加金属离子与氯离子形成难溶盐实现去除。常用沉淀剂包括硝酸银(AgNO?)、硫酸铜(CuSO?)和石灰(Ca(OH)?)。以银盐为例,反应Ag? + Cl? → AgCl↓的溶度积Ksp=1.8×10?1?,理论上可使Cl?浓度降至0.01mg/L以下。某PCB厂采用分级沉淀工艺:先加CuSO?去除80%氯离子(形成CuCl),再用AgNO?深度处理,出水Cl?<5mg/L。但污泥中AgCl需通过氰反应浸出回收银,处理成本约¥120/m3。新型复合沉淀剂如[Ag(NH?)?]?可减少银用量30%,pH适应范围扩至4-10。
反渗透(RO)系统能够有效地去除水中的氯,其工作原理是利用特殊的膜,阻止氯离子等污染物通过,只允许水透过。该系统能够去除水或废水中 95% - 99% 的氯。然而,如果水中氯化物的含量过高,反渗透膜就容易受到损坏,而且设备如果没有进行适当的维护,其运行效率会急剧下降。所以,在使用反渗透系统之前,通常需要配备预处理系统,以延长膜的使用寿命,确保设备能够稳定、高效地运行。
离子交换法和滤膜分离法在处理高浓度含氯废水时,存在一定的局限性。离子交换法的成本相对较高,而且交换树脂的再生过程较为困难;滤膜分离法中的膜使用寿命较短,并且容易受到外界环境因素的影响,比如水中的杂质、酸碱度等,都会降低膜的性能,导致需要频繁更换膜,这无疑增加了废水处理的成本。因此,对于高浓度含氯废水的处理,还需要不断探索更加合适、高效的方法。 在线监测氯浓度误差需控制在±10%。
反渗透(RO)膜对Cl?的截留率受膜材料、压力和水质影响。聚酰胺复合膜(如BW30-4040)在1.5MPa下对500mg/L NaCl溶液的脱盐率为98.5%,但Cl?实际透过量仍达7.5mg/L。海水淡化中,Cl?浓度超过1000mg/L时膜通量衰减速率增加3倍,需每3个月酸洗(0.1%柠檬酸)。某沿海钢厂采用"超滤-RO"双级系统,投资成本¥5.8万/m3·d,能耗4.2kWh/m3。新兴的带正电纳滤膜(如NF90)通过静电排斥可优先截留Cl?,对Mg2?/Ca2?透过率>90%,特别适用于高硬度废水。氯酸盐副产物有毒,需额外处理。宁夏工业除氯除硬系统
化学清洗废液含氯,处置成本高。黑龙江除氯除硬
微生物腐蚀的协同恶化Cl?是嗜盐菌(如Halomonas)生长的必需元素,其存在导致:生物膜厚度增加3倍,形成缺氧腐蚀微环境垢下Cl?浓度可达本体水的20倍(局部腐蚀速率>3mm/年)常规杀菌剂穿透生物膜效率下降70%某炼油厂循环水系统在Cl?>400mg/L时,碳钢管道微生物腐蚀穿孔事故频发,年检修费用增加¥500万。
氯离子会与水处理化学品发生竞争性反应:缓蚀剂干扰:HEDP在Cl?>500mg/L时缓蚀效率从92%暴跌至58%阻垢剂失效:聚羧酸盐对CaSO?的分散能力下降40%杀菌剂消耗:Cl?与ClO?反应生成无效的ClO??,投加量需提高30%某石化企业因Cl?超标(650mg/L),年度水处理药剂成本从¥350万激增至¥800万,且仍无法控制腐蚀速率。 黑龙江除氯除硬