电极作为电化学反应的关键部件,其工作原理基于与电解质或反应物间的相互作用。在电池里,电极通过与电解质中的离子进行氧化还原反应,实现电子的释放与接收,进而产生电能。像是常见的干电池,锌皮作为负极,发生氧化反应释放电子;碳棒为正极,接受电子促使还原反应发生。在电化学过程中,电极表面的活性位点能催化反应,极大地提升反应速率,降低反应所需的活化能,使原本难以发生的反应得以顺利进行。
电极的命名方式丰富多样。部分依据电极的金属部分来命名,如铜电极、银电极,简单直观地表明了电极的主要材质。有些根据电极活性的氧化还原对中的特征物质命名,像甘汞电极,因其氧化还原对涉及甘汞这一特征物质。还有根据电极金属部分形状命名的,例如滴汞电极,其电极金属部分呈液滴状,以及转盘电极,通过特定的旋转结构来影响电化学反应。此外,依据电极功能命名的也不少,比如参比电极,用于为其他电极提供稳定的电位参考。 电沉积Zn-PO?涂层使清洗周期延长6倍。新疆电极设施
循环水pH值的稳定对抑制腐蚀和结垢至关重要。电化学pH调节技术通过电解水反应(阳极:2H?O→4H?+O?+4e?;阴极:2H?O+2e?→2OH?+H?)实现酸碱的精细调控。采用分隔式电解槽时,阴极室pH可升至10-11用于防垢,阳极室pH降至2-3用于酸性清洗。某化工厂采用钛基铱钽电极系统,通过PLC控制电流密度(5-15 mA/cm2)将循环水pH稳定在8.5±0.3,相比传统酸碱加药减少药剂消耗60%。该技术特别适用于高碱度水质(M-alk>300 mg/L),但需注意阴极室可能生成Ca(OH)?沉淀,需配置超声波防垢装置。黑龙江循坏水电极循环水电化学处理设备紧凑。
垃圾渗滤液成分复杂(含腐殖酸、氨氮、重金属等),电氧化可同步实现有机物降解和脱氮。以Ti/RuO?-IrO?阳极为例,在Cl?存在下,氨氮通过间接氧化转化为N?(选择性>70%),同时COD去除率达60-80%。关键问题在于渗滤液的高盐分(如Na?、K?)可能导致电极腐蚀,需采用耐盐涂层(如Ti/Pt)或预处理脱盐。此外,耦合生物处理(如前置厌氧消化)可降低电耗,而脉冲电源模式能减少电极钝化。中试研究表明,处理成本约为8-12元/吨,具备规模化应用潜力。
电极材料是电氧化技术的重要部分,其催化活性、稳定性和成本直接决定应用可行性。目前研究较多的包括金属氧化物电极(如Ti/RuO?、Ti/PbO?)、BDD电极及碳基电极(如石墨、碳毡)。Ti/RuO?电极具有高析氧电位(1.6 V vs. SHE),适合处理含氯废水,但易发生析氧副反应;Ti/PbO?电极成本较低且催化活性强,但长期运行后Pb溶出可能造成二次污染。BDD电极因其化学惰性和超高氧析出电位(>2.3 V)成为难降解有机物处理的理想选择,但制备成本限制了大规模应用。未来趋势是开发复合涂层电极(如SnO?-Sb/Ti)或非贵金属催化剂,以兼顾性能与经济性。铜离子电解释放有效抑制藻类滋生。
工业废水成分复杂,常含有毒、难降解有机物(如酚类、染料、农药),而电氧化技术对此类污染物表现出独特优势。例如,在焦化废水处理中,采用Ti/SnO?-Sb?O?电极可将苯酚浓度从500 mg/L降至5 mg/L以下,COD去除率达85%。对于印染废水,电氧化能同时实现脱色(降解偶氮键)和COD削减,如使用Ti/Pt阳极时,活性艳红X-3B的脱色率在60分钟内达99%。该技术的工业化应用需解决电极寿命(如涂层剥落问题)和能耗优化(如采用脉冲电流),目前已有模块化电氧化反应器用于电镀、制药等行业的中试案例。电解水析氢技术提升换热系数15-20%。黑龙江循坏水电极
电化学pH调控精度达±0.3。新疆电极设施
氯离子对电极氧化的影响主要体现在:①竞争吸附破坏钝化膜(Cl?与O2?竞争金属表面位点);②形成可溶性金属氯配合物(如FeCl?);③形成酸性微环境。当Cl?浓度超过300mg/L时,316不锈钢的点蚀电位会从+0.35V骤降至+0.05V。值得注意的是,Cl?/SO?2?比值超过0.5时,协同效应会明显加剧腐蚀,这解释了为何海水冷却系统需要特种合金电极。
硫酸盐还原菌(SRB)等微生物可通过独特机制加速电极氧化:①分泌酸性代谢物;②形成差异通气电池;③直接参与电子转移。研究发现SRB存在时,碳钢腐蚀速率可达无菌环境的5-10倍。更复杂的是,微生物生物膜会导致电极表面pH梯度变化,某些区域pH可低至2-3,这种微区酸化现象常规探头难以检测,需借助微电极阵列进行空间分辨测量。 新疆电极设施