在粉体处理方面,旋转陶瓷膜同样优势明显。以球形氧化硅、球形氧化铝生产为例,化学合成反应后的溶胶或纳米颗粒悬浮于液相中形成高分散性浆料。碟式陶瓷膜可将浆料比较高浓缩至固含量 65% - 70%,极大节约了洗水量和能耗。在湿法分级或表面修饰形成的浆料处理中,经碟式陶瓷膜浓缩后,高浓度浆料在后期干燥中明显节能,节水量至少可达 50% 以上,且浆料温度波动小,减少了粉体颗粒团聚现象。其独特的旋转加扰流运行方式,对浆料分散效果也有积极作用。乳制品去除脂肪与酪蛋白,除菌过滤延长保质期。碟式陶瓷过滤膜 旋转陶瓷膜结构
场景:IGF 发酵液的浓缩(初始浓度 5 g/L,目标浓缩至 50 g/L)。
方案:采用 100 nm 孔径旋转陶瓷膜,转速 2500 转 / 分钟,错流流速 1.5 m/s,经三级浓缩后,收率达 98%,纯度从 75% 提升至 85%。
场景:大豆肽酶解液的高倍浓缩(用于生产高蛋白饮品,初始浓度 8 g/L,目标浓缩至 80 g/L)。
方案:使用 50 nm 陶瓷膜,配合循环浓缩工艺,浓缩时间比传统蒸发器缩短 40%,且多肽分子量分布更均匀(集中在 500-1000 Da)。
场景:杆菌肽发酵液的提取(初始浓度 10 g/L,需浓缩至 100 g/L 并去除培养基杂质)。
方案:旋转膜设备结合亲和层析,浓缩同时去除 90% 以上的菌体碎片和无机盐,为后续纯化提供高纯度原料。 碟式陶瓷过滤膜 旋转陶瓷膜结构自主研发流速可调式旋转膜设备,通过动态剪切使通量提升至传统膜 2-3 倍。
在高浓度、高黏度(高浓粘)物料的分离浓缩领域,传统过滤技术常因通量衰减快、易堵塞、能耗高等问题受限,而旋转陶瓷膜动态错流技术凭借其独特的抗污染机制和材料特性,成为该类复杂体系的高效解决方案。以下从应用场景、技术优势、典型案例及关键技术要点展开分析:
1. 物料特性高浓度:固相含量通?!?%(如发酵液菌体浓度 10~20 g/L、食品浆料固含量 15%~30%),或溶质浓度高(如高分子聚合物溶液)。高黏度:黏度可达 100~1000 mPa?s(如水基油墨、果胶溶液、淀粉糊),甚至更高(如生物多糖溶液),流动阻力大。复杂组分:常含胶体、蛋白质、微生物、有机大分子等,易形成凝胶层或黏性滤饼。
2. 传统技术的局限性死端过滤:高黏度导致流速极慢,颗??焖俣鸦氯丝?,通量衰减至初始值的 10%~30%。静态膜过滤:浓差极化严重,黏度升高加剧传质阻力,需频繁化学清洗(周期≤4 小时),膜寿命短。离心 / 压滤:高黏度体系能耗剧增(离心功率随黏度平方增长),且固相脱水困难,需添加助滤剂,增加成本和二次污染风险。
在填料基材、锂电相关材料(如正极材料前驱体、电解液溶质、电池级溶剂等)的纯化浓缩过程中,旋转膜设备(尤其是动态错流旋转陶瓷膜 / 有机膜设备)凭借抗污染、高剪切力分散浓差极化等特性,可实现高效分离与精制。
旋转膜设备在填料基材与锂电材料的纯化浓缩中,通过动态错流与旋转剪切力的协同作用,解决了高黏度、易污染体系的分离难题,尤其适用于电池级材料的高纯度要求。从正极前驱体到电解液溶质,该技术已实现从实验室到工业化的应用突破,未来随着锂电材料向高镍、高电压方向发展,旋转膜技术在杂质控制、溶剂回收等领域的优势将进一步凸显,成为锂电材料绿色制造的关键工艺之一。 处理高粘度物料(如明胶溶液)时,通量可达 500L/(m2?h),是传统膜的 2-3 倍。
1. 工艺参数优化
旋转速率:根据黏度调整,通常黏度每增加 100 mPa?s,转速需提高 200~300 r/min(如 100 mPa?s 对应 1000 r/min,500 mPa?s 对应 2500 r/min)。
温度控制:高黏物料常需升温降低黏度(如食品浆料控制在 50~60℃,化工废液可耐 150℃高温),陶瓷膜耐温特性允许此操作。
错流流速:料液循环流速≥3 m/s,形成湍流,避免层流状态下的颗粒沉积。
2. 膜组件设计创新
结构优化:采用多通道管式膜(内径 8~12 mm)或旋转盘式膜,增大比表面积,降低流体阻力。
表面改性:陶瓷膜表面接枝亲水性涂层(如 TiO?光催化层),减少蛋白质等黏性物质吸附。
3. 系统集成方案
组合工艺:与离心预分离、超声辅助等技术结合,处理极端高黏体系(如黏度>1000 mPa?s)。
智能化控制:通过在线黏度计、压力传感器实时调节旋转速率和跨膜压力,实现自适应运行。
旋转陶瓷膜动态错流技术通过 “动态剪切抗污染 + 陶瓷膜大强度分离” 的协同作用,突破了高浓粘物料分离浓缩的技术瓶颈,在生物发酵、食品加工、化工环保等领域展现出明显的工程价值。其关键优势在于对高黏度、高浓度体系的适应性,以及连续化、低耗材的运行特性。在更多极端工况(如高温、强腐蚀、超高黏度)中替代传统工艺。 正极材料(碳酸锂、磷酸铁锂)生产中提升浆料固含量。碟式陶瓷过滤膜 旋转陶瓷膜结构
耐受 7000mPa?s 高粘度物料,跨膜压差稳定在 0.15-0.66bar,通量波动小于 10%。碟式陶瓷过滤膜 旋转陶瓷膜结构
动态错流旋转陶瓷膜的工作原理基于以下技术优势:
陶瓷膜组件高速旋转(转速通常1000~3000转/分钟),在膜表面形成强剪切流,明显降低浓差极化和滤饼层厚度,避免膜孔堵塞。
乳化油流体在离心力和剪切力作用下,油滴与杂质的运动轨迹被破坏,促进油滴聚结和杂质分离。
根据乳化油滴粒径(通常0.1~10μm)选择膜孔径:
微滤(MF)膜(孔径0.1~10μm):分离较大油滴及悬浮物。
超滤(UF)膜(孔径0.01~0.1μm):截留胶体态油滴、表面活性剂及大分子杂质。
陶瓷膜因耐污染、耐高温、化学稳定性强,更适合乳化油的复杂工况。
旋转产生的离心力场与压力场叠加,加速油滴向膜表面迁移,同时水相透过膜孔形成滤液,实现油相浓缩与水相净化。 碟式陶瓷过滤膜 旋转陶瓷膜结构