通过多弧离子镀沉积技术制备了TiN和TiVN涂层,对比了两种涂层在不同工况下的摩擦磨损性能和切削性能,并指出影响刀具涂层服役性能的主要因素。结果表明,V元素掺杂有效提高了TiN涂层的硬度和结合力、减小了TiN涂层的摩擦因数和低温下的磨损率,但V容易氧化的特性导致500℃及以上温度TiVN涂层产生较高的磨损率。切削测试表明,在麻花钻的主切削刃和横刃区域两种涂层发生明显的剥落,而在后刀面涂层未发生明显剥落,TiVN涂层较高的膜基结合强度和耐磨性能使得它对刀具的防护效果更佳;刀具涂层的服役性能与其耐磨性能和膜基结合强度有关,刀具的主切削刃和横刃区域对涂层的耐磨性能和膜基结合强度有着苛刻的要求,且切削刃前列温度较高,对涂层的高温耐磨性能和膜基结合强度要求也高。氮化钛有较高的导电性可用作熔盐电解的电极以及点触头、薄膜电阻等,有较高超导临界温度是优良的超导材料。宿迁镀黑氮化钛检测
采用物物理相沉积法(PVD)在45钢基体表面沉积了TiN和TiAlN涂层.用3种载荷在摩擦磨损试验机上分别对45钢、TiN和TiAlN涂层进行了摩擦试验,用5种载荷分别对3种试样进行了磨损试验,用表面轮廓检测仪检测了3种试样的体积磨损,用划痕仪测量了涂层的临界载荷.研究结果表明:随着载荷的增大,TiAlN和TiN涂层的摩擦系数有较大的下降趋势,TiAlN、TiN有降低摩擦系数的作用,其中TiN的效果更好.45钢、TiN与TiAlN的磨损量都会随载荷的增大而增大.TiN、TiAlN涂层比45钢有较明显的耐磨损的能力,TiAlN涂层比TiN涂层的抗磨损能力更强.45钢的比磨损率趋近于线性变化,TiAlN、TiN涂层的比磨损率趋近于非线性变化.TiN涂层的临界载荷高于TiAlN涂层的临界载荷.威海氮化钛生产企业许多日本的刀具公司都能供应含有氮化钛涂层的产品,其中有些卖给了欧洲部分国家和美国,多数进入日本市场。
氮化钛的制备方法有哪些1金属钛粉或TiH2直接氮化法2TiO2碳热还原氮化法3微波碳热还原法4物物理相沉积法5化学气相沉积法6机械合金化法7熔盐合成法8溶胶-凝胶法9自蔓延高温合成法TiN的性质及结构。TiN属于间隙相,熔点高达2955℃,原子之间的结合为共价键、金属键及离子键的混合键,其中金属原子间存在金属键。因此,TiN薄膜具有高硬度(理论硬度21GPa)、优异的耐热耐磨和耐腐蚀等特性,并且具有较好的金属特性:金属光泽、优良的导电性及超导性。TiN具有典型的NaCl型结构,属于面心立方点阵(F.C.C),其中Ti原子占据面心立方的角顶。并且TiN是非计量化合物,Ti和N组成的化合物TiN1-x可以在很宽的组成范围内稳定存在,其范围为TiN0.6—TiN1.16。氮的含量可在一定范围内变化而不引起TiN的结构变化。
1.氯化钛的超导临界温度较高,可作为优良的超导材料。氮化钛的熔点高于大多数过渡金属氮化物,密度低于大多数金属氮化物,从而成为一种独特的耐火材料。氮化钛可以作为一种膜镀在玻璃上,在红外线反射率大于75%的情况下,当氮化钛薄膜厚度大于90nm时能有效提高玻璃的保温性能。另外,调整氮化钛中氮元素的百分含量,可以改变氮化钛薄膜的颜色,从而达到理想的美观效果。氮化钛(TiN)是相当稳定的化台物,在高温下不与铁、铬、钙和镁等金属反应,TiN坩埚在CO与N2气氛下也不与酸性渣和碱性渣起作用,因此TiN坩埚是研究钢液与一些元素相互作用的优良容器。TiN在真空中加热失去氮,生成氮含量较低的氮化钛。TiN有着诱人的金黄色、熔点高、硬度大、化学稳定性好、与金属的润湿小的结构材料、并具有较高的导电性和超导性,可应用于高温结构材料和超导材料。TiN粉末一般呈黄褐色超细TiN粉末呈黑色,而TiN晶体呈金黄色。
TiN薄膜的研究工作早在20世纪60年代已开始进行,但因材料和器件制备上的困难,使研究工作一度转入低潮。后来随着薄膜制备技术的提高,国内外对TiN薄膜的研究工作又开始活跃起来,制备方法也多样化了,目前已取得很大进展。TiN薄膜的制备方法主要可分为物理物物理相沉积、化学气相沉积两大类。应用于工业的各个领域。TiN薄膜无毒、质轻、强度高且具有优良的生物相容性,因此它是非常理想的医用金属材料,可用作植入人体的植入物和手术器械等阎。此外,氮化钛薄膜还能作为其他优良生物相溶性薄膜的增强薄膜。国外的Nelea等人通过镀制TiN薄膜中间层大幅度提高了医用常用材料羟磷灰石薄膜(HA)的机械性能和附着力。氮化钛有较高的导电性可用作熔盐电解的电极以及点触头、薄膜电阻等材料。上海耐磨氮化钛联系人
TiN熔点为2950℃,密度为5.43-5.44g/cm3,莫氏硬度8-9,抗热冲击性好。宿迁镀黑氮化钛检测
氮化钛陶瓷涂层具有的金黄色外表,涂覆于刀具之上虽拥有优化外观的好处,但主要作用却并非是为了装饰,其具有的硬度值在韦氏硬度(HV)高达2500以上,涂覆于刀具上的厚度一般为3至5微米,相较于未进行涂层加工的原产品具有更高的耐磨性和耐热性,使用寿命也更长。将这项技术应用在工业生产中的机械设备上,例如在齿轮滚刀上涂覆氮化钛其寿命可延长3至4倍,在切削齿轮时可将切削速度或进给量提高更多,从而减少材料机加工时间。工业发达国家对涂层高速刀具的使用率已占高速刀具的70%,汽车行业中几乎全部都采用涂层高速钢刀来加工齿轮,其滚削速度可达70~150m/㎜。宿迁镀黑氮化钛检测